Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix(ingest): resolve missing numeric types for profiling #11991

Merged
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -57,7 +57,11 @@
convert_to_cardinality,
)
from datahub.ingestion.source.sql.sql_report import SQLSourceReport
from datahub.metadata.com.linkedin.pegasus2avro.schema import EditableSchemaMetadata
from datahub.ingestion.source.sql.sql_types import resolve_sql_type
from datahub.metadata.com.linkedin.pegasus2avro.schema import (
EditableSchemaMetadata,
NumberType,
)
from datahub.metadata.schema_classes import (
DatasetFieldProfileClass,
DatasetProfileClass,
Expand Down Expand Up @@ -361,6 +365,8 @@ class _SingleDatasetProfiler(BasicDatasetProfilerBase):
platform: str
env: str

column_types: Dict[str, str] = dataclasses.field(default_factory=dict)

def _get_columns_to_profile(self) -> List[str]:
if not self.config.any_field_level_metrics_enabled():
return []
Expand All @@ -374,6 +380,7 @@ def _get_columns_to_profile(self) -> List[str]:

for col_dict in self.dataset.columns:
col = col_dict["name"]
self.column_types[col] = str(col_dict["type"])
# We expect the allow/deny patterns to specify '<table_pattern>.<column_pattern>'
if not self.config._allow_deny_patterns.allowed(
f"{self.dataset_name}.{col}"
Expand Down Expand Up @@ -430,6 +437,15 @@ def _get_column_type(self, column_spec: _SingleColumnSpec, column: str) -> None:
self.dataset, column
)

if column_spec.type_ == ProfilerDataType.UNKNOWN:
datahub_field_type = resolve_sql_type(
self.column_types[column], self.dataset.engine.dialect.name.lower()
)
if datahub_field_type is None:
return
if isinstance(datahub_field_type, NumberType):
column_spec.type_ = ProfilerDataType.NUMERIC

@_run_with_query_combiner
def _get_column_cardinality(
self, column_spec: _SingleColumnSpec, column: str
Expand Down
15 changes: 13 additions & 2 deletions metadata-ingestion/src/datahub/ingestion/source/sql/sql_types.py
Original file line number Diff line number Diff line change
Expand Up @@ -276,7 +276,6 @@ def resolve_vertica_modified_type(type_string: str) -> Any:
return VERTICA_SQL_TYPES_MAP[type_string]


# see https://docs.snowflake.com/en/sql-reference/intro-summary-data-types.html
SNOWFLAKE_TYPES_MAP: Dict[str, Any] = {
"NUMBER": NumberType,
"DECIMAL": NumberType,
Expand Down Expand Up @@ -312,6 +311,18 @@ def resolve_vertica_modified_type(type_string: str) -> Any:
"GEOGRAPHY": None,
}


def resolve_snowflake_modified_type(type_string: str) -> Any:
# Match types with precision and scale, e.g., 'DECIMAL(38,0)'
match = re.match(r"([a-zA-Z_]+)\(\d+,\s\d+\)", type_string)
if match:
modified_type_base = match.group(1) # Extract the base type
return SNOWFLAKE_TYPES_MAP.get(modified_type_base, None)

# Fallback for types without precision/scale
return SNOWFLAKE_TYPES_MAP.get(type_string, None)


# see https://github.com/googleapis/python-bigquery-sqlalchemy/blob/main/sqlalchemy_bigquery/_types.py#L32
BIGQUERY_TYPES_MAP: Dict[str, Any] = {
"STRING": StringType,
Expand Down Expand Up @@ -490,7 +501,7 @@ def resolve_sql_type(
TypeClass = resolve_vertica_modified_type(column_type)
elif platform == "snowflake":
# Snowflake types are uppercase, so we check that.
TypeClass = _merged_mapping.get(column_type.upper())
TypeClass = resolve_snowflake_modified_type(column_type.upper())

if TypeClass:
return TypeClass()
Expand Down
Loading