Skip to content

Latest commit

 

History

History
63 lines (47 loc) · 2.09 KB

README.md

File metadata and controls

63 lines (47 loc) · 2.09 KB

APD

Adaptive Perspective Distillation for Semantic Segmentation

Zhuotao Tian*; Pengguang Chen*; Xin Lai; Li Jiang; Shu Liu; Hengshuang Zhao; Bei Yu; Ming-Chang Yang; Jiaya Jia

This project provides an implementation for the TPAMI 2022 paper "Adaptive Perspective Distillation for Semantic Segmentation"

Environment

We verify our code on

  • 4x3090 GPUs
  • CUDA 11.1
  • python 3.9
  • torch 1.12.1
  • torchvision 0.13.1

Other similar environments should also work properly.

Installation

git clone https://github.com/dvlab-research/APD.git
cd APD/

Results

Dataset Student Teacher Baseline Ours
ade20k PSPNet-R18 PSPNet-R101 37.19 39.25
cityscapes PSPNet-R18 PSPNet-R101 74.15 75.68
pascal context PSPNet-R18 PSPNet-R101 42.29 43.96

Training

Use the following command to train PSPNet-R18 on ade20k with APD

bash ./tool/train.sh ade20k release_psp18_psp101

Citation

Please consider citing us in your publications if it helps your research.

@article{APD,
  author = {Zhuotao Tian and
            Pengguang Chen and
            Xin Lai and
            Li Jiang and
            Shu Liu and
            Hengshuang Zhao and
            Bei Yu and
            Ming{-}Chang Yang and
            Jiaya Jia},
  title = {Adaptive Perspective Distillation for Semantic Segmentation},
  journal = {{IEEE} Trans. Pattern Anal. Mach. Intell.},
  pages = {1372--1387},
  year = {2023}
}}