Adaptive Perspective Distillation for Semantic Segmentation
Zhuotao Tian*; Pengguang Chen*; Xin Lai; Li Jiang; Shu Liu; Hengshuang Zhao; Bei Yu; Ming-Chang Yang; Jiaya Jia
This project provides an implementation for the TPAMI 2022 paper "Adaptive Perspective Distillation for Semantic Segmentation"
We verify our code on
- 4x3090 GPUs
- CUDA 11.1
- python 3.9
- torch 1.12.1
- torchvision 0.13.1
Other similar environments should also work properly.
git clone https://github.com/dvlab-research/APD.git
cd APD/
Dataset | Student | Teacher | Baseline | Ours |
---|---|---|---|---|
ade20k | PSPNet-R18 | PSPNet-R101 | 37.19 | 39.25 |
cityscapes | PSPNet-R18 | PSPNet-R101 | 74.15 | 75.68 |
pascal context | PSPNet-R18 | PSPNet-R101 | 42.29 | 43.96 |
Use the following command to train PSPNet-R18 on ade20k with APD
bash ./tool/train.sh ade20k release_psp18_psp101
Please consider citing us in your publications if it helps your research.
@article{APD,
author = {Zhuotao Tian and
Pengguang Chen and
Xin Lai and
Li Jiang and
Shu Liu and
Hengshuang Zhao and
Bei Yu and
Ming{-}Chang Yang and
Jiaya Jia},
title = {Adaptive Perspective Distillation for Semantic Segmentation},
journal = {{IEEE} Trans. Pattern Anal. Mach. Intell.},
pages = {1372--1387},
year = {2023}
}}