Cifar10 | Cifar100 | Mnist | F-Mnist | MVTEC | Medical | SVHN | |
---|---|---|---|---|---|---|---|
eps | 8/255 | 8/255 | 8/255 | 8/255 | 2/255 | 2/255 | 8/255 |
size | 32x32 | 32x32 | 32x32 | 32x32 | 224x224 | 224x224 | 32x32 |
python train_and_evaluate.py \
--source_dataset $SOURCE_DATASET \
--source_class $CLASS \
--exposure_dataset $EXPOSURE_DATASET \
--test_attacks ${TEST_ATTACKS[@]} \
--batch_size $BATCH_SIZE \
--max_epochs $MAX_EPOCHS \
--train_attack_step $TRAIN_ATTACK_STEP \
--attack_eps $ATTACK_EPS \
--test_step $TEST_STEP \
--save_step $SAVE_STEP \
--cuda_device $CUDA_DEVICE \
--loss_threshold $LOSS_THRESHOLD \
--model $MODEL_ARCHITECTURE \
--checkpoints_path $CHECKPOINT_PATH \
--output_path $OUTPUT_PATH \
--tensorboard_path $TENSORBOARD_PATH \
--clean \
--force_restart
--source_dataset
: Specifies the name of the normal dataset. Valid options are 'cifar10', 'cifar100', 'mnist', 'fashion', and 'svhn'.
--source_class
: Specifies the index of the normal class in the normal dataset.
--exposure_dataset
: Specifies the name of the exposure dataset. Valid options are 'cifar10', 'cifar100', 'mnist', 'fashion', and 'svhn'.
--checkpoints_path
: Specifies the path to save the model checkpoints. The default path is './Model-Checkpoints/'.
--output_path
: Specifies the path to which plots, results, and other data will be recorded. The default path is './results/'.
--tensorboard_path
: Specifies the path to which plots, results, and other data will be recorded. The default path is './tensorboard/'.
--max_epochs
: Specifies the maximum number of epochs to train the model. The default value is 30.
--batch_size
: Specifies the size of each batch input to the model. The default value is 128.
--attack_eps
: Specifies the attack eps used for both training and testing. The default value is 8/255.
--test_attacks
: Specifies the desired attacks for adversarial testing. For example, '--test_attacks FGSM PGD-10 PGD-100'.
--train_attack_step
: Specifies the desired attack step for adversarial training. The default value is 10.
--clean
: Specifies whether to perform clean training (if present) or adversarial training
--test_step
: Specifies the frequency at which to run tests. The default value is 1.
--save_step
: Specifies the frequency at which to save model checkpoints. The default value is 1.
--cuda_device
: Specifies the index of your CUDA device. The default value is 0.
--force_restart
: Specifies whether to start training from scratch (if present) or use already available checkpoints
--loss_threshold
: Specifies the loss threshold used for early stopping. The default value is 0.001.
--model
: Specifies the backbone used for training. Valid options are 'preactresnet18', 'preactresnet34', 'preactresnet50', 'preactresnet101', and 'preactresnet152.
- Clean AUROC after normal training
- Clean AUROC after adversarial training
- Robust AUROC after adversarial training
- FID Score Support (in this repos)
- MVTEC Ram Efficient support