Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: enable baseline_level param for decomp_plot() + let NULL solID when single model available +docs: update robyn_response() examples #923

Merged
merged 5 commits into from
Feb 17, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion R/DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
Package: Robyn
Type: Package
Title: Semi-Automated Marketing Mix Modeling (MMM) from Meta Marketing Science
Version: 3.10.5.9014
Version: 3.10.5.9015
Authors@R: c(
person("Gufeng", "Zhou", , "[email protected]", c("cre","aut")),
person("Leonel", "Sentana", , "[email protected]", c("aut")),
Expand Down
2 changes: 1 addition & 1 deletion R/R/auxiliary.R
Original file line number Diff line number Diff line change
Expand Up @@ -78,7 +78,7 @@ baseline_vars <- function(InputCollect, baseline_level) {
stopifnot(baseline_level %in% 0:5)
x <- ""
if (baseline_level >= 1)
x <- c(x, "(Intercept)")
x <- c(x, "(Intercept)", "intercept")
if (baseline_level >= 2)
x <- c(x, "trend")
if (baseline_level >= 3)
Expand Down
16 changes: 14 additions & 2 deletions R/R/plots.R
Original file line number Diff line number Diff line change
Expand Up @@ -1485,8 +1485,13 @@ ts_validation <- function(OutputModels, quiet = FALSE, ...) {
#' @param solID Character vector. Model IDs to plot.
#' @param exclude Character vector. Manually exclude variables from plot.
#' @export
decomp_plot <- function(InputCollect, OutputCollect, solID = NULL, exclude = NULL) {
decomp_plot <- function(
InputCollect, OutputCollect, solID = NULL,
exclude = NULL, baseline_level = 0) {
if (is.null(solID) && length(OutputCollect$allSolutions) == 1)
solID <- OutputCollect$allSolutions
check_opts(solID, OutputCollect$allSolutions)
bvars <- baseline_vars(InputCollect, baseline_level)
intType <- str_to_title(case_when(
InputCollect$intervalType %in% c("month", "week") ~ paste0(InputCollect$intervalType, "ly"),
InputCollect$intervalType == "day" ~ "daily",
Expand All @@ -1501,7 +1506,14 @@ decomp_plot <- function(InputCollect, OutputCollect, solID = NULL, exclude = NUL
) %>%
tidyr::gather("variable", "value", -.data$ds, -.data$solID, -.data$dep_var) %>%
filter(!.data$variable %in% exclude) %>%
mutate(variable = factor(.data$variable, levels = rev(unique(.data$variable))))
mutate(variable = ifelse(
.data$variable %in% bvars, paste0("Baseline_L", baseline_level), as.character(.data$variable))) %>%
group_by(.data$solID, .data$ds, .data$variable) %>%
summarise(value = sum(.data$value, na.rm = TRUE),
value = sum(.data$value, na.rm = TRUE),
.groups = "drop") %>%
arrange(abs(.data$value)) %>%
mutate(variable = factor(.data$variable, levels = unique(.data$variable)))
p <- ggplot(df, aes(x = .data$ds, y = .data$value, fill = .data$variable)) +
facet_grid(.data$solID ~ .) +
labs(
Expand Down
89 changes: 58 additions & 31 deletions R/R/response.R
Original file line number Diff line number Diff line change
Expand Up @@ -23,56 +23,83 @@
#' @examples
#' \dontrun{
#' # Having InputCollect and OutputCollect objects
#' ## Recreate original saturation curve
#' Response <- robyn_response(
#' InputCollect = InputCollect,
#' OutputCollect = OutputCollect,
#' select_model = select_model,
#' metric_name = "facebook_S"
#' )
#' Response$plot
#'
#' # Get marginal response (mResponse) and marginal ROI (mROI) for
#' # the next 1k on 80k for search_S
#' spend1 <- 80000
#' ## Or you can call a JSON file directly (a bit slower)
#' # Response <- robyn_response(
#' # json_file = "your_json_path.json",
#' # dt_input = dt_simulated_weekly,
#' # dt_holidays = dt_prophet_holidays,
#' # metric_name = "facebook_S"
#' # )
#'
#' ## Get the "next 100 dollar" marginal response on Spend1
#' Spend1 <- 20000
#' Response1 <- robyn_response(
#' InputCollect = InputCollect,
#' OutputCollect = OutputCollect,
#' metric_name = "search_S",
#' metric_value = spend1
#' )$response
#' # Get ROI for 80k
#' Response1 / spend1 # ROI for search 80k
#' select_model = select_model,
#' metric_name = "facebook_S",
#' metric_value = Spend1, # total budget for date_range
#' date_range = "last_1" # last two periods
#' )
#' Response1$plot
#'
#' # Get response for 81k
#' spend2 <- spend1 + 1000
#' Spend2 <- Spend1 + 100
#' Response2 <- robyn_response(
#' InputCollect = InputCollect,
#' OutputCollect = OutputCollect,
#' metric_name = "search_S",
#' metric_value = spend2
#' )$response
#' select_model = select_model,
#' metric_name = "facebook_S",
#' metric_value = Spend2,
#' date_range = "last_1"
#' )
#' # ROAS for the 100$ from Spend1 level
#' (Response2$response_total - Response1$response_total) / (Spend2 - Spend1)
#'
#' # Get ROI for 81k
#' Response2 / spend2 # ROI for search 81k
#' # Get marginal response (mResponse) for the next 1k on 80k
#' Response2 - Response1
#' # Get marginal ROI (mROI) for the next 1k on 80k
#' (Response2 - Response1) / (spend2 - spend1)
#' ## Get response from for a given budget and date_range
#' Spend3 <- 100000
#' Response3 <- robyn_response(
#' InputCollect = InputCollect,
#' OutputCollect = OutputCollect,
#' select_model = select_model,
#' metric_name = "facebook_S",
#' metric_value = Spend3, # total budget for date_range
#' date_range = "last_5" # last 5 periods
#' )
#' Response3$plot
#'
#' # Example of getting paid media exposure response curves
#' imps <- 1000000
#' ## Example of getting paid media exposure response curves
#' imps <- 10000000
#' response_imps <- robyn_response(
#' InputCollect = InputCollect,
#' OutputCollect = OutputCollect,
#' select_model = select_model,
#' metric_name = "facebook_I",
#' metric_value = imps
#' )$response
#' response_per_1k_imps <- response_imps / imps * 1000
#' response_per_1k_imps
#' )
#' response_imps$response_total / imps * 1000
#' response_imps$plot
#'
#' # Get response for 80k for search_S from the a certain model SolID
#' # in the current model output in the global environment
#' robyn_response(
#' ## Example of getting organic media exposure response curves
#' sendings <- 30000
#' response_sending <- robyn_response(
#' InputCollect = InputCollect,
#' OutputCollect = OutputCollect,
#' metric_name = "search_S",
#' metric_value = 80000,
#' dt_hyppar = OutputCollect$resultHypParam,
#' dt_coef = OutputCollect$xDecompAgg
#' select_model = select_model,
#' metric_name = "newsletter",
#' metric_value = sendings
#' )
#' # response per 1000 sendings
#' response_sending$response_total / sendings * 1000
#' response_sending$plot
#' }
#' @return List. Response value and plot. Class: \code{robyn_response}.
#' @export
Expand Down
8 changes: 7 additions & 1 deletion R/man/robyn_outputs.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

97 changes: 62 additions & 35 deletions R/man/robyn_response.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.