Skip to content

Commit

Permalink
Enable torch elastic training (torchrun) (#1603)
Browse files Browse the repository at this point in the history
Signed-off-by: Ketan Umare <[email protected]>
Signed-off-by: Fabio Graetz <[email protected]>

This PR brings [torch elastic training (`torchrun`)](https://pytorch.org/docs/stable/elastic/run.html) to the pytorch plugin:

```python
from flytekitplugins.kfpytorch import Elastic

@task(
    task_config=Elastic(
        replicas=4,
        nproc_per_node=4,
        ...
    ),
    ...
)
def train(...):
    ...
```

flyteorg/flyte#3614
  • Loading branch information
fg91 authored May 3, 2023
1 parent c541be9 commit baf0b89
Show file tree
Hide file tree
Showing 7 changed files with 455 additions and 59 deletions.
3 changes: 3 additions & 0 deletions plugins/flytekit-kf-pytorch/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,9 @@

This plugin uses the Kubeflow PyTorch Operator and provides an extremely simplified interface for executing distributed training using various PyTorch backends.

This plugin can execute torch elastic training, which is equivalent to run `torchrun`. Elastic training can be executed
in a single Pod (without requiring the PyTorch operator, see below) as well as in a distributed multi-node manner.

To install the plugin, run the following command:

```bash
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -10,4 +10,4 @@
PyTorch
"""

from .task import PyTorch
from .task import Elastic, PyTorch
23 changes: 0 additions & 23 deletions plugins/flytekit-kf-pytorch/flytekitplugins/kfpytorch/models.py

This file was deleted.

201 changes: 196 additions & 5 deletions plugins/flytekit-kf-pytorch/flytekitplugins/kfpytorch/task.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,16 +2,20 @@
This Plugin adds the capability of running distributed pytorch training to Flyte using backend plugins, natively on
Kubernetes. It leverages `Pytorch Job <https://github.com/kubeflow/pytorch-operator>`_ Plugin from kubeflow.
"""
import os
from dataclasses import dataclass
from typing import Any, Callable, Dict
from typing import Any, Callable, Dict, Optional, Union

import cloudpickle
from flyteidl.plugins.pytorch_pb2 import DistributedPyTorchTrainingTask, ElasticConfig
from google.protobuf.json_format import MessageToDict

import flytekit
from flytekit import PythonFunctionTask
from flytekit.configuration import SerializationSettings
from flytekit.extend import TaskPlugins
from flytekit.extend import IgnoreOutputs, TaskPlugins

from .models import PyTorchJob
TORCH_IMPORT_ERROR_MESSAGE = "PyTorch is not installed. Please install `flytekitplugins-kfpytorch['elastic']`."


@dataclass
Expand All @@ -29,6 +33,31 @@ class PyTorch(object):
num_workers: int


@dataclass
class Elastic(object):
"""
Configuration for `torch elastic training <https://pytorch.org/docs/stable/elastic/run.html>`_.
Use this to run single- or multi-node distributed pytorch elastic training on k8s.
Single-node elastic training is executed in a k8s pod when `nnodes` is set to 1.
Multi-node training is executed otherwise using a `Pytorch Job <https://github.com/kubeflow/training-operator>`_.
Args:
nnodes (Union[int, str]): Number of nodes, or the range of nodes in form <minimum_nodes>:<maximum_nodes>.
nproc_per_node (Union[int, str]): Number of workers per node. Supported values are [auto, cpu, gpu, int].
start_method (str): Multiprocessing start method to use when creating workers.
monitor_interval (int): Interval, in seconds, to monitor the state of workers.
max_restarts (int): Maximum number of worker group restarts before failing.
"""

nnodes: Union[int, str] = 1
nproc_per_node: Union[int, str] = "auto"
start_method: str = "spawn"
monitor_interval: int = 5
max_restarts: int = 0


class PyTorchFunctionTask(PythonFunctionTask[PyTorch]):
"""
Plugin that submits a PyTorchJob (see https://github.com/kubeflow/pytorch-operator)
Expand All @@ -46,9 +75,171 @@ def __init__(self, task_config: PyTorch, task_function: Callable, **kwargs):
)

def get_custom(self, settings: SerializationSettings) -> Dict[str, Any]:
job = PyTorchJob(workers_count=self.task_config.num_workers)
return MessageToDict(job.to_flyte_idl())
job = DistributedPyTorchTrainingTask(workers=self.task_config.num_workers)
return MessageToDict(job)


# Register the Pytorch Plugin into the flytekit core plugin system
TaskPlugins.register_pythontask_plugin(PyTorch, PyTorchFunctionTask)


def spawn_helper(fn: bytes, kwargs) -> Any:
"""Help to spawn worker processes.
The purpose of this function is to 1) be pickleable so that it can be used with
the multiprocessing start method `spawn` and 2) to call a cloudpickle-serialized
function passed to it. This function itself doesn't have to be pickleable. Without
such a helper task functions, which are not pickleable, couldn't be used with the
start method `spawn`.
Args:
fn (bytes): Cloudpickle-serialized target function to be executed in the worker process.
Returns:
The return value of the received target function.
"""
fn = cloudpickle.loads(fn)
return_val = fn(**kwargs)
return return_val


class PytorchElasticFunctionTask(PythonFunctionTask[Elastic]):
"""
Plugin for distributed training with torch elastic/torchrun (see
https://pytorch.org/docs/stable/elastic/run.html).
"""

_ELASTIC_TASK_TYPE = "pytorch"
_ELASTIC_TASK_TYPE_STANDALONE = "python-task"

def __init__(self, task_config: Elastic, task_function: Callable, **kwargs):
task_type = self._ELASTIC_TASK_TYPE_STANDALONE if task_config.nnodes == 1 else self._ELASTIC_TASK_TYPE

super(PytorchElasticFunctionTask, self).__init__(
task_config=task_config,
task_type=task_type,
task_function=task_function,
**kwargs,
)
try:
from torch.distributed import run
except ImportError:
raise ImportError(TORCH_IMPORT_ERROR_MESSAGE)
self.min_nodes, self.max_nodes = run.parse_min_max_nnodes(str(self.task_config.nnodes))

"""
c10d is the backend recommended by torch elastic.
https://pytorch.org/docs/stable/elastic/run.html#note-on-rendezvous-backend
For c10d, no backend server has to be deployed.
https://pytorch.org/docs/stable/elastic/run.html#deployment
Instead, the workers will use the master's address as the rendezvous point.
"""
self.rdzv_backend = "c10d"

def _execute(self, **kwargs) -> Any:
"""
This helper method will be invoked to execute the task.
Returns:
The result of rank zero.
"""
try:
from torch.distributed import run
from torch.distributed.launcher.api import LaunchConfig, elastic_launch
except ImportError:
raise ImportError(TORCH_IMPORT_ERROR_MESSAGE)

if isinstance(self.task_config.nproc_per_node, str):
nproc = run.determine_local_world_size(self.task_config.nproc_per_node)
else:
nproc = self.task_config.nproc_per_node

config = LaunchConfig(
run_id=flytekit.current_context().execution_id.name,
min_nodes=self.min_nodes,
max_nodes=self.max_nodes,
nproc_per_node=nproc,
rdzv_backend=self.rdzv_backend, # rdzv settings
rdzv_endpoint=os.environ.get("PET_RDZV_ENDPOINT", "localhost:0"),
max_restarts=self.task_config.max_restarts,
monitor_interval=self.task_config.monitor_interval,
start_method=self.task_config.start_method,
)

if self.task_config.start_method == "spawn":
"""
We use cloudpickle to serialize the non-pickleable task function.
The torch elastic launcher then launches the spawn_helper function (which is pickleable)
instead of the task function. This helper function, in the child-process, then deserializes
the task function, again with cloudpickle, and executes it.
"""
launcher_target_func = spawn_helper

dumped_target_function = cloudpickle.dumps(self._task_function)
launcher_args = (dumped_target_function, kwargs)
elif self.task_config.start_method == "fork":
"""
The torch elastic launcher doesn't support passing kwargs to the target function,
only args. Flyte only works with kwargs. Thus, we create a closure which already has
the task kwargs bound. We tell the torch elastic launcher to start this function in
the child processes.
"""

def fn_partial():
"""Closure of the task function with kwargs already bound."""
return self._task_function(**kwargs)

launcher_target_func = fn_partial
launcher_args = ()

else:
raise Exception("Bad start method")

out = elastic_launch(
config=config,
entrypoint=launcher_target_func,
)(*launcher_args)

# `out` is a dictionary of rank (not local rank) -> result
# Rank 0 returns the result of the task function
if 0 in out:
return out[0]
else:
raise IgnoreOutputs()

def execute(self, **kwargs) -> Any:
"""
This method will be invoked to execute the task.
Handles the exception scope for the `_execute` method.
"""
from flytekit.exceptions import scopes as exception_scopes

return exception_scopes.user_entry_point(self._execute)(**kwargs)

def get_custom(self, settings: SerializationSettings) -> Optional[Dict[str, Any]]:
if self.task_config.nnodes == 1:
"""
Torch elastic distributed training is executed in a normal k8s pod so that this
works without the kubeflow train operator.
"""
return super().get_custom(settings)
else:
elastic_config = ElasticConfig(
rdzv_backend=self.rdzv_backend,
min_replicas=self.min_nodes,
max_replicas=self.max_nodes,
nproc_per_node=self.task_config.nproc_per_node,
max_restarts=self.task_config.max_restarts,
)
job = DistributedPyTorchTrainingTask(
workers=self.max_nodes,
elastic_config=elastic_config,
)
return MessageToDict(job)


# Register the PytorchElastic Plugin into the flytekit core plugin system
TaskPlugins.register_pythontask_plugin(Elastic, PytorchElasticFunctionTask)
Loading

0 comments on commit baf0b89

Please sign in to comment.