-
Notifications
You must be signed in to change notification settings - Fork 299
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
TypeTransformer for TensorFlow model (#1562)
* TypeTransformer for TensorFlow model Signed-off-by: Samhita Alla <[email protected]> * clean up Signed-off-by: Samhita Alla <[email protected]> * clean up Signed-off-by: Samhita Alla <[email protected]> * fix lint Signed-off-by: Samhita Alla <[email protected]> --------- Signed-off-by: Samhita Alla <[email protected]>
- Loading branch information
1 parent
53f134a
commit ee2714f
Showing
6 changed files
with
207 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,76 @@ | ||
import pathlib | ||
from typing import Type | ||
|
||
import tensorflow as tf | ||
|
||
from flytekit.core.context_manager import FlyteContext | ||
from flytekit.core.type_engine import TypeEngine, TypeTransformer, TypeTransformerFailedError | ||
from flytekit.models.core import types as _core_types | ||
from flytekit.models.literals import Blob, BlobMetadata, Literal, Scalar | ||
from flytekit.models.types import LiteralType | ||
|
||
|
||
class TensorFlowModelTransformer(TypeTransformer[tf.keras.Model]): | ||
TENSORFLOW_FORMAT = "TensorFlowModel" | ||
|
||
def __init__(self): | ||
super().__init__(name="TensorFlow Model", t=tf.keras.Model) | ||
|
||
def get_literal_type(self, t: Type[tf.keras.Model]) -> LiteralType: | ||
return LiteralType( | ||
blob=_core_types.BlobType( | ||
format=self.TENSORFLOW_FORMAT, | ||
dimensionality=_core_types.BlobType.BlobDimensionality.MULTIPART, | ||
) | ||
) | ||
|
||
def to_literal( | ||
self, | ||
ctx: FlyteContext, | ||
python_val: tf.keras.Model, | ||
python_type: Type[tf.keras.Model], | ||
expected: LiteralType, | ||
) -> Literal: | ||
meta = BlobMetadata( | ||
type=_core_types.BlobType( | ||
format=self.TENSORFLOW_FORMAT, | ||
dimensionality=_core_types.BlobType.BlobDimensionality.MULTIPART, | ||
) | ||
) | ||
|
||
local_path = ctx.file_access.get_random_local_path() | ||
pathlib.Path(local_path).parent.mkdir(parents=True, exist_ok=True) | ||
|
||
# save model in SavedModel format | ||
tf.keras.models.save_model(python_val, local_path) | ||
|
||
remote_path = ctx.file_access.get_random_remote_path() | ||
ctx.file_access.put_data(local_path, remote_path, is_multipart=True) | ||
return Literal(scalar=Scalar(blob=Blob(metadata=meta, uri=remote_path))) | ||
|
||
def to_python_value( | ||
self, ctx: FlyteContext, lv: Literal, expected_python_type: Type[tf.keras.Model] | ||
) -> tf.keras.Model: | ||
try: | ||
uri = lv.scalar.blob.uri | ||
except AttributeError: | ||
TypeTransformerFailedError(f"Cannot convert from {lv} to {expected_python_type}") | ||
|
||
local_path = ctx.file_access.get_random_local_path() | ||
ctx.file_access.get_data(uri, local_path, is_multipart=True) | ||
|
||
# load model | ||
return tf.keras.models.load_model(local_path) | ||
|
||
def guess_python_type(self, literal_type: LiteralType) -> Type[tf.keras.Model]: | ||
if ( | ||
literal_type.blob is not None | ||
and literal_type.blob.dimensionality == _core_types.BlobType.BlobDimensionality.MULTIPART | ||
and literal_type.blob.format == self.TENSORFLOW_FORMAT | ||
): | ||
return tf.keras.Model | ||
|
||
raise ValueError(f"Transformer {self} cannot reverse {literal_type}") | ||
|
||
|
||
TypeEngine.register(TensorFlowModelTransformer()) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,54 @@ | ||
import tensorflow as tf | ||
|
||
from flytekit import task, workflow | ||
|
||
|
||
@task | ||
def generate_model() -> tf.keras.Model: | ||
inputs = tf.keras.Input(shape=(32,)) | ||
outputs = tf.keras.layers.Dense(1)(inputs) | ||
model = tf.keras.Model(inputs, outputs) | ||
model.compile( | ||
optimizer=tf.keras.optimizers.Adam(learning_rate=1e-3), | ||
loss=tf.keras.losses.BinaryCrossentropy(), | ||
metrics=[ | ||
tf.keras.metrics.BinaryAccuracy(), | ||
], | ||
) | ||
return model | ||
|
||
|
||
@task | ||
def generate_sequential_model() -> tf.keras.Sequential: | ||
model = tf.keras.Sequential( | ||
[ | ||
tf.keras.layers.Input(shape=(32,)), | ||
tf.keras.layers.Dense(1), | ||
] | ||
) | ||
model.compile( | ||
optimizer=tf.keras.optimizers.Adam(learning_rate=1e-3), | ||
loss=tf.keras.losses.BinaryCrossentropy(), | ||
metrics=[ | ||
tf.keras.metrics.BinaryAccuracy(), | ||
], | ||
) | ||
return model | ||
|
||
|
||
@task | ||
def model_forward_pass(model: tf.keras.Model) -> tf.Tensor: | ||
x: tf.Tensor = tf.ones((1, 32)) | ||
return model(x) | ||
|
||
|
||
@workflow | ||
def wf(): | ||
model1 = generate_model() | ||
model2 = generate_sequential_model() | ||
model_forward_pass(model=model1) | ||
model_forward_pass(model=model2) | ||
|
||
|
||
def test_wf(): | ||
wf() |
75 changes: 75 additions & 0 deletions
75
tests/flytekit/unit/extras/tensorflow/model/test_transformations.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,75 @@ | ||
from collections import OrderedDict | ||
|
||
import numpy as np | ||
import pytest | ||
import tensorflow as tf | ||
|
||
import flytekit | ||
from flytekit import task | ||
from flytekit.configuration import Image, ImageConfig | ||
from flytekit.core import context_manager | ||
from flytekit.extras.tensorflow import TensorFlowModelTransformer | ||
from flytekit.models.core.types import BlobType | ||
from flytekit.models.literals import BlobMetadata | ||
from flytekit.models.types import LiteralType | ||
from flytekit.tools.translator import get_serializable | ||
|
||
default_img = Image(name="default", fqn="test", tag="tag") | ||
serialization_settings = flytekit.configuration.SerializationSettings( | ||
project="project", | ||
domain="domain", | ||
version="version", | ||
env=None, | ||
image_config=ImageConfig(default_image=default_img, images=[default_img]), | ||
) | ||
|
||
|
||
def get_tf_model(): | ||
inputs = tf.keras.Input(shape=(32,)) | ||
outputs = tf.keras.layers.Dense(1)(inputs) | ||
tf_model = tf.keras.Model(inputs, outputs) | ||
return tf_model | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"transformer,python_type,format", | ||
[ | ||
(TensorFlowModelTransformer(), tf.keras.Model, TensorFlowModelTransformer.TENSORFLOW_FORMAT), | ||
], | ||
) | ||
def test_get_literal_type(transformer, python_type, format): | ||
lt = transformer.get_literal_type(python_type) | ||
assert lt == LiteralType(blob=BlobType(format=format, dimensionality=BlobType.BlobDimensionality.MULTIPART)) | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"transformer,python_type,format,python_val", | ||
[ | ||
(TensorFlowModelTransformer(), tf.keras.Model, TensorFlowModelTransformer.TENSORFLOW_FORMAT, get_tf_model()), | ||
], | ||
) | ||
def test_to_python_value_and_literal(transformer, python_type, format, python_val): | ||
ctx = context_manager.FlyteContext.current_context() | ||
lt = transformer.get_literal_type(python_type) | ||
|
||
lv = transformer.to_literal(ctx, python_val, type(python_val), lt) # type: ignore | ||
output = transformer.to_python_value(ctx, lv, python_type) | ||
|
||
assert lv.scalar.blob.metadata == BlobMetadata( | ||
type=BlobType( | ||
format=format, | ||
dimensionality=BlobType.BlobDimensionality.MULTIPART, | ||
) | ||
) | ||
assert lv.scalar.blob.uri is not None | ||
for w1, w2 in zip(output.weights, python_val.weights): | ||
np.testing.assert_allclose(w1.numpy(), w2.numpy()) | ||
|
||
|
||
def test_example_model(): | ||
@task | ||
def t1() -> tf.keras.Model: | ||
return get_tf_model() | ||
|
||
task_spec = get_serializable(OrderedDict(), serialization_settings, t1) | ||
assert task_spec.template.interface.outputs["o0"].type.blob.format is TensorFlowModelTransformer.TENSORFLOW_FORMAT |