Skip to content

Commit

Permalink
Pytorch plugin usage example (#11)
Browse files Browse the repository at this point in the history
  • Loading branch information
igorvalko authored Jun 16, 2020
1 parent 90bc5a3 commit 761426a
Show file tree
Hide file tree
Showing 6 changed files with 335 additions and 0 deletions.
18 changes: 18 additions & 0 deletions pytorch/Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
FROM pytorch/pytorch:1.5-cuda10.1-cudnn7-runtime

RUN pip install awscli

RUN pip install tensorboardX==2.0.0 flytekit[pytorch]==0.8.1

WORKDIR /app

COPY ./workflows ./workflows
COPY ./flyte.config ./

ARG IMAGE_TAG
ENV FLYTE_INTERNAL_IMAGE "$IMAGE_TAG"
ENV LC_ALL C.UTF-8
ENV LANG C.UTF-8
ENV PYTHONPATH /app

ENTRYPOINT []
2 changes: 2 additions & 0 deletions pytorch/Makefile
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
docker_build:
IMAGE_NAME=flytesnacks-pytorch scripts/docker_build.sh
59 changes: 59 additions & 0 deletions pytorch/README.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
PyTorch plugin usage example
============================

This demo is built on top of this `example`_

#############
Prerequisites
#############

Before running this make sure that
- pytorch plugin is enabled in flytepropeller's config
- `Kubeflow pytorch operator`_ is installed in your k8s cluster (you can use `base`_ and configure it in your deploy)
- [if using GPU] `GPU device plugin`_ is deployed as well

#####
Usage
#####

Build container and push it to the registry

.. code-block::
cd pytorch
make docker_build
Create flyte project

.. code-block::
curl -v -X POST http://127.0.0.1:30081/api/v1/projects -d '{"project": {"id": "pytorch-mnist", "name": "pytorch-mnist"} }'
Register workflow

.. code-block::
docker run --network host flytesnacks-pytorch:<TAG> pyflyte -p pytorch-mnist -d development -c flyte.config register workflows
Navigate to https://127.0.0.1:30081/console/projects/pytorch-mnist/workflows?domain=development and launch workflow.

#####
Notes
#####

In order to disable GPU usage for the MNIST task just comment out ``per_replica_gpu_limit="1"`` in ``pytorch_task`` decorator

.. code-block::
@pytorch_task(
workers_count=2,
per_replica_cpu_request="500m",
per_replica_memory_request="4Gi",
per_replica_memory_limit="8Gi",
#per_replica_gpu_limit="1",
)
.. _`example`: https://github.com/kubeflow/pytorch-operator/blob/b7fef224fef1ef0117f6e74961b557270fcf4b04/examples/mnist/mnist.py
.. _`Kubeflow pytorch operator`: https://github.com/kubeflow/pytorch-operator
.. _`base`: https://github.com/lyft/flyte/blob/master/kustomize/base/operators/kfoperators/pytorch/kustomization.yaml
.. _`GPU device plugin`: https://kubernetes.io/docs/tasks/manage-gpus/scheduling-gpus/#deploying-nvidia-gpu-device-plugin
16 changes: 16 additions & 0 deletions pytorch/flyte.config
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
[sdk]
workflow_packages=workflows

[platform]
url=127.0.0.1:30081
insecure=True

[auth]
assumable_iam_role=arn:aws:iam::123:role/test-role

[aws]
s3_shard_formatter=s3://my-s3-bucket/{}
s3_shard_string_length=2
endpoint=http://minio:9000
access_key_id=minio
secret_access_key=miniostorage
60 changes: 60 additions & 0 deletions pytorch/scripts/docker_build.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
#!/usr/bin/env bash

# WARNING: THIS FILE IS MANAGED IN THE 'BOILERPLATE' REPO AND COPIED TO OTHER REPOSITORIES.
# ONLY EDIT THIS FILE FROM WITHIN THE 'LYFT/BOILERPLATE' REPOSITORY:
#
# TO OPT OUT OF UPDATES, SEE https://github.com/lyft/boilerplate/blob/master/Readme.rst

set -e

echo ""
echo "------------------------------------"
echo " DOCKER BUILD"
echo "------------------------------------"
echo ""

if [ -n "$REGISTRY" ]; then
# Do not push if there are unstaged git changes
CHANGED=$(git status --porcelain)
if [ -n "$CHANGED" ]; then
echo "Please commit git changes before pushing to a registry"
exit 1
fi
fi


GIT_SHA=$(git rev-parse HEAD)

IMAGE_TAG_WITH_SHA="${IMAGE_NAME}:${GIT_SHA}"

RELEASE_SEMVER=$(git describe --tags --exact-match "$GIT_SHA" 2>/dev/null) || true
if [ -n "$RELEASE_SEMVER" ]; then
IMAGE_TAG_WITH_SEMVER="${IMAGE_NAME}:${RELEASE_SEMVER}${IMAGE_TAG_SUFFIX}"
fi

# build the image
docker build -t "$IMAGE_TAG_WITH_SHA" --build-arg IMAGE_TAG="${IMAGE_TAG_WITH_SHA}" .
echo "${IMAGE_TAG_WITH_SHA} built locally."

# if REGISTRY specified, push the images to the remote registy
if [ -n "$REGISTRY" ]; then

if [ -n "${DOCKER_REGISTRY_PASSWORD}" ]; then
docker login --username="$DOCKER_REGISTRY_USERNAME" --password="$DOCKER_REGISTRY_PASSWORD"
fi

docker tag "$IMAGE_TAG_WITH_SHA" "${REGISTRY}/${IMAGE_TAG_WITH_SHA}"

docker push "${REGISTRY}/${IMAGE_TAG_WITH_SHA}"
echo "${REGISTRY}/${IMAGE_TAG_WITH_SHA} pushed to remote."

# If the current commit has a semver tag, also push the images with the semver tag
if [ -n "$RELEASE_SEMVER" ]; then

docker tag "$IMAGE_TAG_WITH_SHA" "${REGISTRY}/${IMAGE_TAG_WITH_SEMVER}"

docker push "${REGISTRY}/${IMAGE_TAG_WITH_SEMVER}"
echo "${REGISTRY}/${IMAGE_TAG_WITH_SEMVER} pushed to remote."

fi
fi
180 changes: 180 additions & 0 deletions pytorch/workflows/mnist.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,180 @@
#https://github.com/kubeflow/pytorch-operator/blob/b7fef224fef1ef0117f6e74961b557270fcf4b04/examples/mnist/mnist.py
from __future__ import absolute_import
from __future__ import print_function

import argparse
import os

from tensorboardX import SummaryWriter
from torchvision import datasets, transforms
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

from flytekit.sdk.tasks import inputs, outputs
from flytekit.sdk.types import Types
from flytekit.sdk.workflow import workflow_class, Input, Output

from flytekit.sdk.tasks import pytorch_task

WORLD_SIZE = int(os.environ.get('WORLD_SIZE', 1))


class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 20, 5, 1)
self.conv2 = nn.Conv2d(20, 50, 5, 1)
self.fc1 = nn.Linear(4*4*50, 500)
self.fc2 = nn.Linear(500, 10)

def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2, 2)
x = x.view(-1, 4*4*50)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)

def train(model, device, train_loader, optimizer, epoch, writer, log_interval):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tloss={:.4f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
niter = epoch * len(train_loader) + batch_idx
writer.add_scalar('loss', loss.item(), niter)

def test(model, device, test_loader, writer, epoch):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()

test_loss /= len(test_loader.dataset)
print('\naccuracy={:.4f}\n'.format(float(correct) / len(test_loader.dataset)))
accuracy = float(correct) / len(test_loader.dataset)
writer.add_scalar('accuracy', accuracy, epoch)
return accuracy

def epoch_step(model, device, train_loader, test_loader, optimizer, epoch, writer, log_interval):
train(model, device, train_loader, optimizer, epoch, writer, log_interval)
return test(model, device, test_loader, writer, epoch)

def should_distribute():
return dist.is_available() and WORLD_SIZE > 1


def is_distributed():
return dist.is_available() and dist.is_initialized()

@inputs(
no_cuda=Types.Boolean,
batch_size=Types.Integer,
test_batch_size=Types.Integer,
epochs=Types.Integer,
learning_rate=Types.Float,
sgd_momentum=Types.Float,
seed=Types.Integer,
log_interval=Types.Integer,
dir=Types.String)
@outputs(epoch_accuracies=[Types.Float], model_state=Types.Blob)
@pytorch_task(
workers_count=2,
per_replica_cpu_request="500m",
per_replica_memory_request="4Gi",
per_replica_memory_limit="8Gi",
per_replica_gpu_limit="1",
)
def mnist_pytorch_job(workflow_params, no_cuda, batch_size, test_batch_size, epochs, learning_rate, sgd_momentum, seed, log_interval, dir, epoch_accuracies, model_state):
backend_type = dist.Backend.GLOO

writer = SummaryWriter(dir)

torch.manual_seed(seed)

use_cuda = not no_cuda
device = torch.device('cuda' if use_cuda and torch.cuda.is_available else 'cpu')

print('Using device: {}, world size: {}'.format(device, WORLD_SIZE))

if should_distribute():
print('Using distributed PyTorch with {} backend'.format(backend_type))
dist.init_process_group(backend=backend_type)

kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=test_batch_size, shuffle=False, **kwargs)

model = Net().to(device)

if is_distributed():
Distributor = nn.parallel.DistributedDataParallel if use_cuda and torch.cuda.is_available \
else nn.parallel.DistributedDataParallelCPU
model = Distributor(model)

optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=sgd_momentum)

accuracies = [epoch_step(model, device, train_loader, test_loader, optimizer, epoch, writer, log_interval) for epoch in range(1, epochs + 1)]

model_file = "mnist_cnn.pt"
torch.save(model.state_dict(), model_file)

model_state.set(model_file)
epoch_accuracies.set(accuracies)


@workflow_class
class MNISTTest(object):
no_cuda = Input(Types.Boolean, default=False, help="disables CUDA training")
batch_size = Input(Types.Integer, default=64, help='input batch size for training (default: 64)')
test_batch_size = Input(Types.Integer, default=1000, help='input batch size for testing (default: 1000)')
epochs = Input(Types.Integer, default=1, help='number of epochs to train (default: 10)')
learning_rate = Input(Types.Float, default=0.01, help='learning rate (default: 0.01)')
sgd_momentum = Input(Types.Float, default=0.5, help='SGD momentum (default: 0.5)')
seed = Input(Types.Integer, default=1, help='random seed (default: 1)')
log_interval = Input(Types.Integer, default=10, help='how many batches to wait before logging training status')
dir = Input(Types.String, default='logs', help='directory where summary logs are stored')

mnist_result = mnist_pytorch_job(
no_cuda=no_cuda,
batch_size=batch_size,
test_batch_size=test_batch_size,
epochs=epochs,
learning_rate=learning_rate,
sgd_momentum=sgd_momentum,
seed=seed,
log_interval=log_interval,
dir=dir
)

accuracies = Output(mnist_result.outputs.epoch_accuracies, sdk_type=[Types.Float])
model = Output(mnist_result.outputs.model_state, sdk_type=Types.Blob)

0 comments on commit 761426a

Please sign in to comment.