-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
c9deca3
commit 4b965ab
Showing
2 changed files
with
178 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,177 @@ | ||
import warnings | ||
from pathlib import Path | ||
|
||
import matplotlib.pyplot as plt | ||
import pandas as pd | ||
import seaborn as sns | ||
from sklearn.metrics import cohen_kappa_score | ||
from datasets import load_dataset | ||
|
||
warnings.filterwarnings("ignore", category=RuntimeWarning, module="sklearn") | ||
|
||
|
||
FONT_SIZES = {"small": 12, "medium": 16, "large": 18} | ||
COLORS = { | ||
"green": "#355145", | ||
"purple": "#d8a6e5", | ||
"orange": "#fe7759", | ||
"blue": "#4c6ee6", | ||
} | ||
|
||
PLOT_PARAMS = { | ||
"font.family": "serif", | ||
"font.serif": ["Times New Roman", "STIX"], | ||
"font.size": FONT_SIZES.get("medium"), | ||
"axes.titlesize": FONT_SIZES.get("large"), | ||
"axes.labelsize": FONT_SIZES.get("large"), | ||
"xtick.labelsize": FONT_SIZES.get("large"), | ||
"ytick.labelsize": FONT_SIZES.get("large"), | ||
"legend.fontsize": FONT_SIZES.get("medium"), | ||
"figure.titlesize": FONT_SIZES.get("medium"), | ||
"text.usetex": False, | ||
} | ||
|
||
LANG_STANDARDIZATION = { | ||
"arb": "ar", | ||
"ces": "cs", | ||
"deu": "de", | ||
"ell": "el", | ||
"fra": "fr", | ||
"heb": "he", | ||
"hin": "hi", | ||
"ind": "id", | ||
"ita": "it", | ||
"jpn": "jp", | ||
"kor": "kr", | ||
"nld": "nl", | ||
"pes": "fa", | ||
"pol": "pl", | ||
"por": "pt", | ||
"ron": "ro", | ||
"rus": "ru", | ||
"spa": "es", | ||
"tur": "tr", | ||
"ukr": "uk", | ||
"vie": "vi", | ||
"zho": "zh", | ||
} | ||
|
||
SUBSET_MAPPING = { | ||
"Chat": [ | ||
"alpacaeval-easy", | ||
"alpacaeval-length", | ||
"alpacaeval-hard", | ||
"mt-bench-easy", | ||
"mt-bench-med", | ||
], | ||
"Chat Hard": [ | ||
"mt-bench-hard", | ||
"llmbar-natural", | ||
"llmbar-adver-neighbor", | ||
"llmbar-adver-GPTInst", | ||
"llmbar-adver-GPTOut", | ||
"llmbar-adver-manual", | ||
], | ||
"Safety": [ | ||
"refusals-dangerous", | ||
"refusals-offensive", | ||
"xstest-should-refuse", | ||
"xstest-should-respond", | ||
"donotanswer", | ||
], | ||
"Reasoning": [ | ||
"math-prm", | ||
"hep-cpp", | ||
"hep-go", | ||
"hep-java", | ||
"hep-js", | ||
"hep-python", | ||
"hep-rust", | ||
], | ||
} | ||
|
||
|
||
def find_key(d: dict[str, list[str]], value: str) -> str | None: | ||
for key, values in d.items(): | ||
if value in values: | ||
return key | ||
return None | ||
|
||
|
||
plt.rcParams.update(PLOT_PARAMS) | ||
|
||
# annotations = Path("data/hin_Deva_histogram.csv") | ||
lang = "hin_Deva" | ||
lang = "ind_Latn" | ||
annotations = Path(f"plots/{lang}_histogram.csv") | ||
reference = Path("plots/eng_Latn_histogram.csv") | ||
|
||
annot_df = pd.read_csv(annotations).set_index("model").T | ||
ref_df = pd.read_csv(reference).set_index("model").T | ||
|
||
cohen_scores: dict[str, float] = {} | ||
for (idx, annot), (_, ref) in zip(annot_df.iterrows(), ref_df.iterrows()): | ||
cohen_scores[idx] = cohen_kappa_score(annot.to_list(), ref.to_list(), labels=[0, 1, 2]) | ||
|
||
|
||
df = pd.DataFrame([cohen_scores]).T.reset_index().rename(columns={0: "cohen", "index": "instance_id"}).dropna() | ||
sdf = load_dataset( | ||
"aya-rm-multilingual/multilingual-reward-bench-gtranslate", "ind_Latn", split="filtered" | ||
).to_pandas() | ||
sdf = sdf[["prompt", "chosen", "rejected", "subset", "id"]].rename(columns={"id": "instance_id"}) | ||
sdf["instance_id"] = sdf["instance_id"].apply(lambda x: str(x)) | ||
combi = df.merge(sdf, on="instance_id").sort_values(by="cohen", ascending=False).reset_index(drop=True) | ||
combi["category"] = combi["subset"].apply(lambda x: find_key(SUBSET_MAPPING, x)) | ||
|
||
# df_grouped = combi.groupby(["category", "cohen"]).count().groupby(level=0).apply(lambda x: x / x.sum()).reset_index() | ||
combi["count"] = 1 | ||
|
||
# Bin the data and compute percentages | ||
|
||
|
||
fig, axs = plt.subplots( | ||
2, | ||
1, | ||
figsize=(8, 6), | ||
sharex=True, | ||
gridspec_kw={"height_ratios": [5, 2]}, | ||
) | ||
sns.histplot( | ||
df["cohen"], | ||
ax=axs[0], | ||
stat="count", | ||
fill=True, | ||
color=COLORS.get("orange"), | ||
) | ||
|
||
axs[0].axvline(x=0, color=COLORS.get("green"), linestyle="--", linewidth=1) | ||
axs[0].axvline(x=0.60, color=COLORS.get("green"), linestyle="--", linewidth=1) | ||
|
||
sns.histplot( | ||
data=combi, | ||
x="cohen", | ||
# weights="count", | ||
hue="category", | ||
multiple="fill", | ||
ax=axs[1], | ||
palette=[ | ||
COLORS.get("green"), | ||
COLORS.get("purple"), | ||
COLORS.get("orange"), | ||
COLORS.get("blue"), | ||
], | ||
) | ||
|
||
lang_code = LANG_STANDARDIZATION[lang.split("_")[0]] | ||
axs[1].set_xlabel(f"Cohen's Kappa (Language: {lang_code})") | ||
axs[1].set_ylabel("Percentage") | ||
|
||
# annot_df["model_annotations"] = [i for i in annot_df.values] | ||
# annot_df["eng_reference"] = [i for i in ref_df.values] | ||
# annotations = annot_df[["model_annotations", "eng_reference"]].reset_index().rename(columns={"index": "instance_id"}) | ||
# df = df.merge(annotations, how="left", on="instance_id") | ||
|
||
axs[0].set_axisbelow(True) | ||
axs[0].grid(True, color="gray", axis="y", alpha=0.2) | ||
plt.tight_layout() | ||
plt.savefig(f"plots/cohen_k_histogram_{lang}.svg", bbox_inches="tight") |