Skip to content

Commit

Permalink
Task 61 (#134)
Browse files Browse the repository at this point in the history
  • Loading branch information
Parcly-Taxel authored Sep 25, 2024
1 parent e805e2e commit ff89e6f
Showing 1 changed file with 47 additions and 21 deletions.
68 changes: 47 additions & 21 deletions Carleson/HardyLittlewood.lean
Original file line number Diff line number Diff line change
Expand Up @@ -8,13 +8,11 @@ noncomputable section

/-! This should roughly contain the contents of chapter 9. -/

-- #check VitaliFamily
-- Note: Lemma 9.0.2 is roughly Vitali.exists_disjoint_covering_ae

section Prelude

variable (X : Type*) [PseudoMetricSpace X] [SeparableSpace X]

/-- Lemma 9.0.2 -/
lemma covering_separable_space :
∃ C : Set X, C.Countable ∧ ∀ r > 0, ⋃ c ∈ C, ball c r = univ := by
simp_rw [← Metric.dense_iff_iUnion_ball, exists_countable_dense]
Expand Down Expand Up @@ -42,6 +40,13 @@ M_𝓑 in the blueprint. -/
abbrev MB (μ : Measure X) (𝓑 : Set ι) (c : ι → X) (r : ι → ℝ) (u : X → E) (x : X) : ℝ≥0∞ :=
maximalFunction μ 𝓑 c r 1 u x

lemma maximalFunction_eq_MB
{μ : Measure X} {𝓑 : Set ι} {c : ι → X} {r : ι → ℝ} {p : ℝ} {u : X → E} {x : X} (hp : 0 ≤ p) :
maximalFunction μ 𝓑 c r p u x = (MB μ 𝓑 c r (‖u ·‖ ^ p) x) ^ p⁻¹ := by
unfold MB maximalFunction; rw [← ENNReal.rpow_mul, inv_one, one_mul]; congr! 8
rw [ENNReal.rpow_one, ← ENNReal.coe_rpow_of_nonneg _ hp, ENNReal.coe_inj,
Real.nnnorm_rpow_of_nonneg (by simp), nnnorm_norm]

-- We will replace the criterion `P` used in `MeasureTheory.SublinearOn.maximalFunction` with the
-- weaker criterion `LocallyIntegrable` that is closed under addition and scalar multiplication.

Expand Down Expand Up @@ -308,7 +313,7 @@ protected theorem HasWeakType.MB_one [BorelSpace X] (h𝓑 : 𝓑.Countable)
/-- The constant factor in the statement that `M_𝓑` has strong type. -/
irreducible_def CMB (A p : ℝ≥0) : ℝ≥0 := C_realInterpolation ⊤ 11 p 1 (A ^ 2) 1 p⁻¹

/- The proof is given between (9.0.12)-(9.0.34).
/-- Special case of equation (2.0.44). The proof is given between (9.0.12) and (9.0.34).
Use the real interpolation theorem instead of following the blueprint. -/
lemma hasStrongType_MB [BorelSpace X] [NormedSpace ℝ E] [MeasurableSpace E] [BorelSpace E]
[IsFiniteMeasureOnCompacts μ] [ProperSpace X] [Nonempty X] [μ.IsOpenPosMeasure]
Expand All @@ -326,15 +331,36 @@ lemma hasStrongType_MB [BorelSpace X] [NormedSpace ℝ E] [MeasurableSpace E] [B
(HasWeakType.MB_one μ h𝓑.countable (h𝓑.exists_image_le r).choose_spec)

/-- The constant factor in the statement that `M_{𝓑, p}` has strong type. -/
irreducible_def C2_0_6 (A p₁ p₂ : ℝ≥0) : ℝ≥0 := sorry -- todo: define in terms of `CMB`.
irreducible_def C2_0_6 (A p₁ p₂ : ℝ≥0) : ℝ≥0 := CMB A (p₂ / p₁) ^ (p₁⁻¹ : ℝ)

/- The proof is given between (9.0.34)-(9.0.36). -/
theorem hasStrongType_maximalFunction {p₁ p₂ : ℝ≥0}
(hp₁ : 1 ≤ p₁) (hp₁₂ : p₁ < p₂)
{u : X → E} (hu : AEStronglyMeasurable u μ) :
/-- Equation (2.0.44). The proof is given between (9.0.34) and (9.0.36). -/
theorem hasStrongType_maximalFunction
[BorelSpace X] [IsFiniteMeasureOnCompacts μ] [ProperSpace X] [Nonempty X] [μ.IsOpenPosMeasure]
{p₁ p₂ : ℝ≥0} (h𝓑 : 𝓑.Finite) (hp₁ : 1 ≤ p₁) (hp₁₂ : p₁ < p₂) :
HasStrongType (fun (u : X → E) (x : X) ↦ maximalFunction μ 𝓑 c r p₁ u x |>.toReal)
p₂ p₂ μ μ (C2_0_6 A p₁ p₂) := by
sorry
p₂ p₂ μ μ (C2_0_6 A p₁ p₂) := fun v mlpv ↦ by
dsimp only
constructor; · exact AEStronglyMeasurable.maximalFunction_toReal h𝓑.countable
have cp₁p : 0 < (p₁ : ℝ) := zero_lt_one.trans_le hp₁
have p₁n : p₁ ≠ 0 := by exact_mod_cast cp₁p.ne'
conv_lhs =>
enter [1, x]
rw [maximalFunction_eq_MB (by exact zero_le_one.trans hp₁), ← ENNReal.toReal_rpow,
← ENNReal.abs_toReal, ← Real.norm_eq_abs]
rw [eLpNorm_norm_rpow _ (by positivity), ENNReal.ofReal_inv_of_pos cp₁p,
ENNReal.ofReal_coe_nnreal, ← div_eq_mul_inv, ← ENNReal.coe_div p₁n]
calc
_ ≤ (CMB A (p₂ / p₁) * eLpNorm (fun y ↦ ‖v y‖ ^ (p₁ : ℝ)) (p₂ / p₁) μ) ^ p₁.toReal⁻¹ := by
apply ENNReal.rpow_le_rpow _ (by positivity)
convert (hasStrongType_MB h𝓑 (μ := μ) _ (fun x ↦ ‖v x‖ ^ (p₁ : ℝ)) _).2
· exact (ENNReal.coe_div p₁n).symm
· rwa [NNReal.lt_div_iff p₁n, one_mul]
· rw [ENNReal.coe_div p₁n]; exact Memℒp.norm_rpow_div mlpv p₁
_ ≤ _ := by
rw [ENNReal.mul_rpow_of_nonneg _ _ (by positivity), eLpNorm_norm_rpow _ cp₁p,
ENNReal.ofReal_coe_nnreal, ENNReal.div_mul_cancel (by positivity) (by simp),
ENNReal.rpow_rpow_inv (by positivity), ← ENNReal.coe_rpow_of_nonneg _ (by positivity),
C2_0_6]

section GMF

Expand All @@ -346,20 +372,20 @@ variable (μ) in
@[nolint unusedArguments]
def globalMaximalFunction [μ.IsDoubling A] (p : ℝ) (u : X → E) (x : X) : ℝ≥0∞ :=
A ^ 2 * maximalFunction μ ((covering_separable_space X).choose ×ˢ (univ : Set ℤ))
(fun z ↦ z.1) (fun z ↦ 2 ^ z.2) p u x
(·.1) (2 ^ ·.2) p u x

-- prove only if needed. Use `MB_le_eLpNormEssSup`
theorem globalMaximalFunction_lt_top {p : ℝ≥0} (hp₁ : 1 ≤ p)
{u : X → E} (hu : AEStronglyMeasurable u μ) (hu : IsBounded (range u)) {x : X} :
globalMaximalFunction μ p u x < ∞ := by
globalMaximalFunction μ p u x < ∞ := by
sorry

protected theorem MeasureTheory.AEStronglyMeasurable.globalMaximalFunction
[BorelSpace X] {p : ℝ} {u : X → E} : AEStronglyMeasurable (globalMaximalFunction μ p u) μ :=
aestronglyMeasurable_iff_aemeasurable.mpr <|
AEStronglyMeasurable.maximalFunction
(countable_globalMaximalFunction X) |>.aemeasurable.const_mul _
AEStronglyMeasurable.maximalFunction (countable_globalMaximalFunction X)
|>.aemeasurable.const_mul _ |>.aestronglyMeasurable

/-- Equation (2.0.45). -/
theorem laverage_le_globalMaximalFunction {u : X → E} (hu : AEStronglyMeasurable u μ)
(hu : IsBounded (range u)) {z x : X} {r : ℝ} (h : dist x z < r) :
⨍⁻ y, ‖u y‖₊ ∂μ.restrict (ball z r) ≤ globalMaximalFunction μ 1 u x := by
Expand All @@ -368,12 +394,12 @@ theorem laverage_le_globalMaximalFunction {u : X → E} (hu : AEStronglyMeasurab
/-- The constant factor in the statement that `M` has strong type. -/
def C2_0_6' (A p₁ p₂ : ℝ≥0) : ℝ≥0 := A ^ 2 * C2_0_6 A p₁ p₂

/- easy from `hasStrongType_maximalFunction`. Ideally prove separately
/-- Equation (2.0.46).
easy from `hasStrongType_maximalFunction`. Ideally prove separately
`HasStrongType.const_smul` and `HasStrongType.const_mul`. -/
theorem hasStrongType_globalMaximalFunction {p₁ p₂ : ℝ≥0}
(hp₁ : 1 ≤ p₁) (hp₁₂ : p₁ < p₂)
{u : X → ℂ} (hu : AEStronglyMeasurable u μ) (hu : IsBounded (range u))
{z x : X} {r : ℝ} :
theorem hasStrongType_globalMaximalFunction {p₁ p₂ : ℝ≥0} (hp₁ : 1 ≤ p₁) (hp₁₂ : p₁ < p₂)
{u : X → ℂ} (hu : AEStronglyMeasurable u μ) (h2u : IsBounded (range u)) :
HasStrongType (fun (u : X → E) (x : X) ↦ globalMaximalFunction μ p₁ u x |>.toReal)
p₂ p₂ μ μ (C2_0_6' A p₁ p₂) := by
sorry
Expand Down

0 comments on commit ff89e6f

Please sign in to comment.