-
Notifications
You must be signed in to change notification settings - Fork 53
First steps
FINAL CUT is a library for creating text-based terminal applications. It runs on several Unix-like platforms. The release of FINAL CUT is licensed under the terms of the GNU Lesser General Public License v3.0 (GNU LGPL v3), which allows flexible licensing of applications. FINAL CUT was written in the programming language C++. The object-oriented design allows the creation of fast and lean programs.
FINAL CUT is a widget toolkit. A user interface usually consists of several widgets. FINAL CUT draws widgets on virtual windows and then mapped them on a virtual terminal. It uses the terminal capabilities from the Termcap library to display the character matrix of the virtual terminal on the screen or a terminal emulator. It uses various optimization methods to improve the drawing speed.
Figure 1. Structure of a FINAL CUT application
FINAL CUT has many widgets. It offers buttons, input fields, menus, and
dialog boxes that cover the most common use cases. Widgets are visual
elements that are combined to create user interfaces. Own widgets can be
easily created by creating a derived class of FWidget
or other existing
widgets. All widgets are instances of
FWidget
or its subclasses.
A widget can contain any number of child widgets. Child widgets are displayed
in the display area of the parent widget. Window widgets based on FWindow
have their own virtual display area and are independent of the parent widget.
When a parent widget is disabled, hidden, or deleted, the same operation is
used recursively to all its child widgets. The base class FObject
implements
the self-organized object tree behavior. For example, addChild()
removes
the child ownership from an existing parent object before assigning it to
the new target. When a child becomes deleted, the parent-child relationship
causes its reference in the parent object to be removed. An explicit
delChild()
is no longer required here.
An FApplication
widget is the top-level widget of an application. It is
unique and can not have a parent widget. The class FApplication
manages
all settings and assigns keyboard and mouse input to the different widgets.
Figure 2. Widget tree of a FINAL CUT application
The main widget of a FINAL CUT application is the only object that
FApplication
can have as a child. This main widget is usually a window
object that contains all sub-widgets of the application. A sub-widget can
also be another window.
At the beginning of this introduction to the FINAL CUT we will start with a small example.
The following example creates an empty 30×10 character dialog.
File: dialog.cpp
#include <final/final.h>
auto main (int argc, char* argv[]) -> int
{
finalcut::FApplication app(argc, argv);
finalcut::FDialog dialog(&app);
dialog.setText ("A dialog");
const finalcut::FPoint position{25, 5};
const finalcut::FSize size{30, 10};
dialog.setGeometry (position, size);
finalcut::FWidget::setMainWidget(&dialog);
dialog.show();
return app.exec();
}
Figure 3. A blank dialog
Note
You can close the dialog with the mouse, Shift+F10 or Ctrl+^
After entering the source code in dialog.cpp you can compile the above program with gcc:
g++ dialog.cpp -o dialog -O2 -lfinal
#include <final/final.h>
All final cut programs have to include the final.h header.
finalcut::FApplication app(argc, argv);
This line creates the finalcut::FApplication
object app
with
the command line arguments argc
and argv
. This object manages
the application main event loop. It receives keyboard and mouse events
and sends them to the target widgets. You have to create an application
object before you can create a widgets object.
The next line
finalcut::FDialog dialog(&app);
creates the finalcut::FDialog
object dialog
with the object app
as parent object. The finalcut::FDialog
class is the base class for
creating dialog windows.
dialog.setText ("A dialog");
The title bar of the dialog box gets the text "A dialog".
finalcut::FPoint position{25, 5};
finalcut::FSize size{30, 10};
dialog.setGeometry (position, size);
The dialog window gets a width of 30 and a height of 10 characters. The position of the window in the terminal is at x=25 and y=5.
Note
x=1 and y=1 represents the upper left corner.
finalcut::FWidget::setMainWidget(&dialog);
The dialog
object was now selected as the main widget for the application.
When you close the main widget, the entire application quits.
dialog.show();
A window or widget is not visible directly after its creation.
Only the call of show()
makes it (and its child objects,
if available) visible.
return app.exec();
The last line calls exec()
to start the application and to return
the result to the operating system. The started application enters
the main event loop. This loop does not end until the window is
closed.
To create a hierarchy of FObjects (or derived classes/widgets), a new FObject has to be initialized with its parent object.
FObject* parent = new FObject();
FObject* child = new FObject(parent);
When the used memory of a parent FObject gets deallocated, the allocated memory of its child objects will also be deallocated automatically.
An object can also be assigned to another object later via addChild()
.
FObject* parent = new FObject();
FObject* child = new FObject();
parent->addChild(child);
The child object assignment can be removed at any time with
delChild()
.
FObject* parent = new FObject();
FObject* child = new FObject(parent);
parent->delChild(child);
If an FObject with a parent gets removed from the hierarchy, the destructor automatically deletes the object assignment from its parent object. If a class object doesn't derive from FObject, you have to implement storage deallocation yourself.
File: memory.cpp
#include <final/final.h>
using namespace finalcut;
auto main (int argc, char* argv[]) -> int
{
FApplication app(argc, argv);
// The object dialog is managed by app
FDialog* dialog = new FDialog(&app);
dialog->setText ("Window Title");
dialog->setGeometry (FPoint{25, 5}, FSize{40, 8});
// The object input is managed by dialog
FLineEdit* input = new FLineEdit("predefined text", dialog);
input->setGeometry(FPoint{8, 2}, FSize{29, 1});
input->setLabelText (L"&Input");
// The object label is managed by dialog
FLabel* label = new FLabel ( "Lorem ipsum dolor sit amet, consectetur "
"adipiscing elit, sed do eiusmod tempor "
"incididunt ut labore et dolore magna aliqua."
, dialog );
label->setGeometry (FPoint{2, 4}, FSize{36, 1});
FWidget::setMainWidget(dialog);
dialog->show();
return app.exec();
}
Figure 4. FObject manages its child objects
Note
You can close the dialog with the mouse, Shift+F10 or Ctrl+^
After entering the source code in memory.cpp you can compile the above program with gcc:
g++ memory.cpp -o memory -O2 -lfinal
Calling FApplication::exec()
starts the FINAL CUT main event loop.
While the event loop is running, the system checks all the time whether
an event has occurred and sends it to the application's currently focused
object. The events of the terminal, such as keystrokes, mouse actions, or
terminal size changing, are translated into FEvent
objects, and are sent to
the active FObject
. It is also possible to use FApplication::sendEvent()
or FApplication::queueEvent()
to send a specific event to an object.
FObject
-derived objects process incoming events by reimplementing the
virtual method event()
. The FObject
itself can only call its own events
onTimer()
and onUserEvent()
and ignores all other events. The
FObject
-derived class FWidget
also reimplements the event()
method
to handle further events. FWidget
calls the FWidget::onKeyPress
method
when you press a key, or the FWidget::onMouseDown
method when you click
a mouse button.
An event in FINAL CUT is an object that inherits from the base class
FEvent
. There are several event types, represented by an enum value.
For example, the method FEvent::type()
returns the type
Event::MouseDown
when you press down a mouse button.
Some event types have data that cannot be stored in an FEvent
object.
For example, a click event of the mouse requires to store which button was
triggered and the position of the mouse pointer at that time. In classes
derived from FEvent
, such as FMouseEvent()
, we store this data.
Widgets get their events from the event()
method inherited from FObject
.
The implementation of event()
in FWidget
forwards the most common event
types to specific event handlers such as FMouseEvent()
, FKeyEvent()
or
FResizeEvent()
. There are many other event types. You can create your own
event types and send them to other objects and widgets.
enum class Event
{
None, // invalid event
KeyPress, // key pressed
KeyUp, // key released
KeyDown, // key pressed
MouseDown, // mouse button pressed
MouseUp, // mouse button released
MouseDoubleClick, // mouse button double click
MouseWheel, // mouse wheel rolled
MouseMove, // mouse move
FocusIn, // focus in
FocusOut, // focus out
ChildFocusIn, // child focus in
ChildFocusOut, // child focus out
FailAtChildFocus, // No further focusable child widgets
TerminalFocusIn, // terminal focus in
TerminalFocusOut, // terminal focus out
WindowActive, // activate window
WindowInactive, // deactivate window
WindowRaised, // raise window
WindowLowered, // lower window
Accelerator, // keyboard accelerator
Resize, // terminal resize
Show, // widget is shown
Hide, // widget is hidden
Close, // widget close
Timer, // timer event occur
User // user defined event
};
The following example starts a periodic timer that triggers an FTimerEvent()
every 100 ms. The virtual method onTimer()
is then called each time in the
same dialog object.
File: timer.cpp
#include <final/final.h>
using namespace finalcut;
class dialogWidget : public FDialog
{
public:
explicit dialogWidget (FWidget* parent = nullptr)
: FDialog{parent}
{
label.setAlignment (Align::Right);
id = addTimer(100);
}
private:
void initLayout()
{
setText ("Dialog");
setGeometry (FPoint{25, 5}, FSize{23, 4});
label.setGeometry (FPoint{1, 1}, FSize{10, 1});
value.setGeometry (FPoint{11, 1}, FSize{10, 1});
FDialog::initLayout();
}
void onTimer (FTimerEvent* ev) override
{
if ( id == ev->getTimerId() && n < 9999999999 )
{
value.setNumber(n);
value.redraw();
n++;
}
}
FLabel label{"Counter: ", this};
FLabel value{"0", this};
long n{0};
int id{0};
};
auto main (int argc, char* argv[]) -> int
{
FApplication app(argc, argv);
dialogWidget dialog(&app);
FWidget::setMainWidget(&dialog);
dialog.show();
return app.exec();
}
Figure 5. FObject::onTimer event handler
Note
You can close the dialog with the mouse, Shift+F10 or Ctrl+^
After entering the source code in timer.cpp you can compile the above program with gcc:
g++ timer.cpp -o timer -O2 -lfinal -std=c++14
You can use the FUserEvent()
to create a individual event and send it to a
specific object. If you want to create more than one user event, you can
specify an identification number (0 in the example below) to identify the
different events. Afterwards this number can be retrieved with getUserId()
.
User events should be generated in the main event loop. For this purpose,
the class FApplication
provides the virtual method
processExternalUserEvent()
. This method can be overwritten in a derived
class and filled with user code.
The following example reads the average system load and creates a user event
when a value changes. This event sends the current values to an FLabel
widget and displays them in the terminal.
File: user-event.cpp
#include <stdlib.h>
#include <final/final.h>
#define _BSD_SOURCE 1
#define _DEFAULT_SOURCE 1
using LoadAvg = double[3];
using namespace finalcut;
class extendedApplication : public FApplication
{
public:
extendedApplication (const int& argc, char* argv[])
: FApplication(argc, argv)
{ }
private:
void processExternalUserEvent() override
{
if ( getMainWidget() )
{
if ( getloadavg(load_avg, 3) < 0 )
FApplication::getLog()->error("Can't get load average values");
if ( last_avg[0] != load_avg[0]
|| last_avg[1] != load_avg[1]
|| last_avg[2] != load_avg[2] )
{
FUserEvent user_event(Event::User, 0);
user_event.setData (load_avg);
FApplication::sendEvent (getMainWidget(), &user_event);
}
for (std::size_t i = 0; i < 3; i++)
last_avg[i] = load_avg[i];
}
}
// Data member
LoadAvg load_avg{}, last_avg{};
};
class dialogWidget final : public FDialog
{
public:
explicit dialogWidget (FWidget* parent = nullptr)
: FDialog{"User event", parent}
{ }
private:
void initLayout()
{
FDialog::setGeometry (FPoint{25, 5}, FSize{40, 6});
loadavg_label.setGeometry (FPoint{2, 2}, FSize{36, 1});
FDialog::initLayout();
}
void onUserEvent (FUserEvent* ev) override
{
const auto& lavg = ev->getData<LoadAvg>();
std::setlocale(LC_NUMERIC, "C");
loadavg_label.clear();
loadavg_label << "Load average: " << lavg[0] << ", "
<< lavg[1] << ", "
<< lavg[2] << " ";
loadavg_label.redraw();
}
FLabel loadavg_label{this};
};
auto main (int argc, char* argv[]) -> int
{
extendedApplication app(argc, argv);
dialogWidget dialog(&app);
FWidget::setMainWidget(&dialog);
dialog.show();
return app.exec();
}
Figure 6. User event generation
Note
You can close the dialog with the mouse, Shift+F10 or Ctrl+^
After entering the source code in user-event.cpp you can compile the above program with gcc:
g++ user-event.cpp -o user-event -O2 -lfinal -std=c++14
The callback mechanism is essential for developing applications with
FINAL CUT. Callback routines allow the programmer to connect different
objects (which do not need to know each other). Connected objects notify
each other when an action occurs in a widget. To uniquely identify a widget
action, it uses signal strings. For example, if an FButton
object gets
clicked by a keyboard or mouse, it sends the string "clicked". A signal
handler explicitly provided by Widget, in the form of a callback function
or a callback method, can react to such a signal.
A callback function has no return value and can have various arguments:
void cb_function (FWidget* w, int* i, double* d, ...)
{...}
The structure of a callback method is the same:
void classname::cb_methode (FWidget* w, int* i, double* d, ...)
{...}
We use the addCallback()
method of the FWidget
class to connect
to other widget objects.
- For calling functions or static methods via a pointer:
template< typename Function
, typename FunctionPointer<Function>::type = nullptr
, typename... Args >
void FWidget::addCallback ( const FString& cb_signal
, Function&& cb_function
, Args&&... args)
{...}
- For calling functions or static methods via a reference:
template< typename Function
, typename FunctionReference<Function>::type = nullptr
, typename... Args >
void FWidget::addCallback ( const FString& cb_signal
, Function& cb_function
, Args&&... args)
{...}
- For calling a member method of a specific instance:
template< typename Object
, typename Function
, typename ObjectPointer<Object>::type = nullptr
, typename MemberFunctionPointer<Function>::type = nullptr
, typename... Args >
void FWidget::addCallback ( const FString& cb_signal
, Object&& cb_instance
, Function&& cb_member
, Args&&... args)
{...}
- For calling a std::bind call wrapper or a lambda expression:
template< typename Function
, typename ClassObject<Function>::type = nullptr
, typename... Args >
void FWidget::addCallback ( const FString& cb_signal
, Function&& cb_function
, Args&&... args)
{...}
- For calling a std::bind call wrapper to a specific instance:
template< typename Object
, typename Function
, typename ObjectPointer<Object>::type = nullptr
, typename ClassObject<Function>::type = nullptr
, typename... Args >
void FWidget::addCallback ( const FString& cb_signal
, Object&& cb_instance
, Function&& cb_function
, Args&&... args)
{...}
- For calling a lambda function that has been stored in a variable with the keyword auto:
template< typename Function
, typename ClassObject<Function>::type = nullptr
, typename... Args >
void FWidget::addCallback ( const FString& cb_signal
, Function& cb_function
, Args&&... args)
{...}
With delCallback(...)
you can remove a connection to a signal handler
or a widget instance. Alternatively, you can use delCallbacks()
to
remove all existing callbacks from an object.
- To delete functions or static methods callbacks via a pointer:
template< typename FunctionPtr
, typename FunctionPointer<FunctionPtr>::type = nullptr >
void FWidget::delCallback (FunctionPtr&& cb_func_ptr)
{...}
- To delete functions or static methods callbacks via a reference:
template< typename Function
, typename FunctionReference<Function>::type = nullptr >
void FWidget::delCallback (Function& cb_function)
{...}
- To delete all callbacks from a specific instance:
template< typename Object
, typename ObjectPointer<Object>::type = nullptr >
void FWidget::delCallback (Object&& cb_instance)
{...}
- To delete all callbacks of a signal:
void delCallback (const FString& cb_signal)
{...}
- To delete all callbacks of a signal and specific instance:
template< typename Object
, typename ObjectPointer<Object>::type = nullptr >
void delCallback (const FString& cb_signal, Object&& cb_instance)
{...}
- To delete all callbacks from a widget:
void delCallback()
{...}
- FApplication
- "first-dialog-opened"
"last-dialog-closed" - FButton
- "clicked"
- FCheckMenuItem
- "clicked"
"toggled" - FLineEdit
- "activate"
"changed" - FListBox
- "changed"
"clicked"
"row-changed"
"row-selected" - FListView
- "changed"
"clicked"
"row-changed" - FMenu
- "activate"
- FMenuItem
- "activate"
"clicked"
"deactivate" - FRadioMenuItem
- "clicked"
"toggled" - FScrollbar
- "change-value"
- FSpinBox
- "changed"
- FStatusBar
- "activate"
- FTextView
- "changed"
- FToggleButton
- "clicked"
"toggled" - FWidget
- "destroy"
"enable"
"disable"
"focus-in"
"focus-out"
"mouse-press"
"mouse-release"
"mouse-move"
"mouse-wheel-down"
"mouse-wheel-up"
File: callback-function.cpp
#include <final/final.h>
using namespace finalcut;
void cb_changeText (const FButton& button, FLabel& label)
{
label.clear();
label << "The " << button.getClassName() << " was pressed";
label.redraw();
}
auto main (int argc, char* argv[]) -> int
{
FApplication app(argc, argv);
FDialog dialog(&app);
dialog.setText ("A dialog with callback function");
dialog.setGeometry (FRect{25, 5, 45, 9});
FLabel label (&dialog);
label = "The button has never been pressed before";
label.setGeometry (FPoint{2, 2}, FSize{41, 1});
FButton button (&dialog);
// Character follows '&' will be used as the accelerator key
button = "&Click me";
button.setGeometry (FPoint{15, 5}, FSize{14, 1});
// Connect the button signal "clicked" with the callback function
button.addCallback
(
"clicked", // Callback signal
&cb_changeText, // Function pointer
std::cref(button), // First function argument
std::ref(label) // Second function argument
);
FWidget::setMainWidget(&dialog);
dialog.show();
return app.exec();
}
Figure 7. Button with a callback function
Note
You can close the dialog with the mouse, Shift+F10 or Ctrl+^
After entering the source code in callback-function.cpp you can compile the above program with gcc:
g++ callback-function.cpp -o callback-function -O2 -lfinal
File: callback-lambda.cpp
#include <final/final.h>
using namespace finalcut;
auto main (int argc, char* argv[]) -> int
{
FApplication app(argc, argv);
FDialog dialog(&app);
dialog.setText ("Lambda expression as callback");
dialog.setGeometry (FRect{25, 5, 45, 9});
FButton button ("&bottom", &dialog);
button.setGeometry (FPoint{15, 5}, FSize{14, 1});
// Connect the button signal "clicked" with the lambda expression
button.addCallback
(
"clicked", // Callback signal
[] (FButton& button, FDialog& dgl) // Lambda function
{
if ( button.getY() != 2 )
{
button.setPos (FPoint{15, 2});
button.setText("&top");
}
else
{
button.setPos (FPoint{15, 5});
button.setText("&bottom");
}
dgl.redraw();
},
std::ref(button), // First function argument
std::ref(dialog) // Second function argument
);
FWidget::setMainWidget(&dialog);
dialog.show();
return app.exec();
}
Figure 8. Button with lambda expression callback.
Note
You can close the dialog with the mouse, Shift+F10 or Ctrl+^
After entering the source code in callback-lambda.cpp you can compile the above program with gcc:
g++ callback-lambda.cpp -o callback-lambda -O2 -lfinal -std=c++14
File: callback-method.cpp
#include <final/final.h>
using namespace finalcut;
class dialogWidget : public FDialog
{
public:
explicit dialogWidget (FWidget* parent = nullptr)
: FDialog{parent}
{
// Connect the button signal "clicked" with the callback method
button.addCallback
(
"clicked", // Callback signal
finalcut::getFApplication(), // Class instance
&finalcut::FApplication::cb_exitApp, // Method pointer
this // Function argument
);
}
private:
void initLayout()
{
setText ("Callback method");
setGeometry (FPoint{25, 5}, FSize{25, 7});
button.setGeometry (FPoint{7, 3}, FSize{10, 1});
FDialog::initLayout();
}
FButton button{"&Quit", this};
};
auto main (int argc, char* argv[]) -> int
{
FApplication app(argc, argv);
dialogWidget dialog(&app);
FWidget::setMainWidget(&dialog);
dialog.show();
return app.exec();
}
Figure 9. Button with a callback method
Note
You can close the dialog with the mouse, Shift+F10 or Ctrl+^
After entering the source code in callback-method.cpp you can compile the above program with gcc:
g++ callback-method.cpp -o callback-method -O2 -lfinal -std=c++14
You can use the emitCallback()
method to generate a user-defined signal.
You can connect this signal later with the method addCallback()
to a
self-defined routine.
File: emit-signal.cpp
#include <final/final.h>
using namespace finalcut;
class dialogWidget : public FDialog
{
public:
explicit dialogWidget (FWidget* parent = nullptr)
: FDialog{parent}
{
label.setAlignment (Align::Right);
label.setForegroundColor (FColor::Black);
plus.setNoUnderline();
minus.setNoUnderline();
// Connect the button signal "clicked" with the callback method
plus.addCallback ("clicked", this, &dialogWidget::cb_plus);
minus.addCallback ("clicked", this, &dialogWidget::cb_minus);
// Connect own signals
addCallback ("hot", this, &dialogWidget::cb_set_red);
addCallback ("regular", this, &dialogWidget::cb_set_black);
addCallback ("cold", this, &dialogWidget::cb_set_blue);
}
private:
void initLayout()
{
setGeometry (FPoint{25, 5}, FSize{22, 7});
setText ("Emit signal");
const FSize size{5, 1};
label.setGeometry (FPoint{8, 1}, size);
plus.setGeometry (FPoint{3, 3}, size);
minus.setGeometry (FPoint{3, 3} + FPoint{10, 0}, size);
FDialog::initLayout();
}
void cb_plus()
{
if ( t < 100 )
t++;
if ( t == 30 )
emitCallback("hot");
else if ( t == 1 )
emitCallback("regular");
setTemperature();
}
void cb_minus()
{
if ( t > -99 )
t--;
if ( t == 0 )
emitCallback("cold");
else if ( t == 29 )
emitCallback("regular");
setTemperature();
}
void cb_set_blue()
{
label.setForegroundColor (FColor::Blue);
}
void cb_set_black()
{
label.setForegroundColor (FColor::Black);
}
void cb_set_red()
{
label.setForegroundColor (FColor::Red);
}
void setTemperature()
{
label.clear();
label << t << "°C";
label.redraw();
}
int t = 20;
FLabel label{std::move(FString() << t << "°C"), this};
FButton plus {"&+", this};
FButton minus {"&-", this};
};
auto main (int argc, char* argv[]) -> int
{
FApplication app(argc, argv);
dialogWidget dialog(&app);
FWidget::setMainWidget(&dialog);
dialog.show();
return app.exec();
}
Figure 10. Callbacks with custom signals
Note
You can close the dialog with the mouse, Shift+F10 or Ctrl+^
After entering the source code in emit-signal.cpp you can compile the above program with gcc:
g++ emit-signal.cpp -o emit-signal -O2 -lfinal -std=c++14
The positioning of a widget in the terminal works via a coordinate
system. It consists of x characters in the horizontal and y
characters in the vertical. The upper left corner has the coordinates
(1, 1). With the commands getDesktopWidth()
and getDesktopHeight()
,
the width and height of the terminal get retrieved. These two values
result in the position of the lower right terminal corner. The position
of a widget is retrievable with getX()
, getY()
, and getPos()
or
is definable with setX()
, setY()
, and setPos()
. The data type for
each coordinate is an int
. All positions represent an FPoint
object. The positioning of the widget is always relative to its parent
widget. The top parent widget in a chain of children contains the
terminal desktop. There the absolute terminal positions are still
identical to the relative positions (getPos()
= getTermPos()
). In
the case of a child widget, the positioning is corresponding to the
upper left corner of the parent widget plus a possible padding space
(can be determined with getLeftPadding()
and getTopPadding()
).
If you want to ignore padding spaces, you have to force this with the
ignorePadding()
method.
Figure 11. Widget coordinates
int getX() const;
int getY() const;
const FPoint getPos() const;
int getTermX() const;
int getTermY() const;
const FPoint getTermPos() const;
virtual void setX (int x, bool adjust = true);
virtual void setY (int y, bool adjust = true);
virtual void setPos (const FPoint& p, bool adjust = true);
If you set the value of adjust
to false
when calling setX()
,
setY()
, or setPos()
, this will prevent the explicit call of
adjustSize()
afterward. This is important to avoid adjustSize()
loops or to block the adjustSize()
call from being repeated
unnecessarily often.
The dimensions of a widget can be retrieved and defined separately in
width and height. The methods getWidth()
and getHeight()
respectively setWidth()
and setHeight()
are used for this. Because
a length cannot be negative, all lengths are of type std::size_t
.
The maximum size of a child widget automatically results from the size
of the parent widget, which is retrievable with getClientWidth()
and
getClientHeight()
. Some widgets have a border, a title bar, or both,
which can reduce the maximum size of the child widget.
widget width ≥ client widget width
widget height ≥ client widget height
Corresponding padding space ensures the correct distance here. The
padding space can be retrieved separately for all four sides with
the widget methods getTopPadding()
, getLeftPadding()
,
getBottomPadding()
, and getRightPadding()
. You can set the
required padding space for the widget using the setTopPadding()
,
setLeftPadding()
, setBottomPadding()
and setRightPadding()
methods.
widget width = left padding + client width + right padding
widget height = top padding + client height + bottom padding
Figure 12. Width and height of a widget
std::size_t getWidth() const;
std::size_t getHeight() const;
std::size_t getClientWidth() const;
std::size_t getClientHeight() const;
int getTopPadding() const;
int getLeftPadding() const;
int getBottomPadding() const;
int getRightPadding() const;
virtual void setWidth (std::size_t width, bool adjust = true);
virtual void setHeight (std::size_t height, bool adjust = true);
void setTopPadding (int top, bool adjust = true);
void setLeftPadding (int left, bool adjust = true);
void setBottomPadding (int bottom, bool adjust = true);
void setRightPadding (int right, bool adjust = true);
If the value of adjust
is set to false
for setWidth()
,
setHeight()
, setTopPadding()
, setLeftPadding()
,
setBottomPadding()
or setRightPadding()
, then adjustSize()
is
not explicitly called afterward. This is important to prevent
adjustSize()
loops or to avoid that adjustSize()
is called
unnecessarily often.
The terminal area in which a widget appears determines its geometry.
The geometry of a widget is composed of its position and its size.
A widget position is always of object type FPoint
and a widget
size of type FSize
. The widget geometry can be retrieved as FRect
object via the widget method getGeometry()
and set with the method
setGeometry()
. The getTermGeometry()
method gets the total values
of the terminal geometry.
If you are only interested in the size of a widget, you can also use
the method getSize()
. To set the widget size, you can use the method
setSize()
.
The position of a shadow is outside the widget. The shadow size itself
as FSize
object is retrievable via the getShadow()
method. You
can set the widget shadow size with the setShadowSize()
method. If
you want to get the geometry values of a widget, including its shadow,
you can use the method getGeometryWithShadow()
from the FWidget
class. If you want to have the entire geometry with shadow for the
absolute geometry values as a FRect
object, you can call the method
getTermGeometryWithShadow()
.
Figure 13. Geometry of widgets
const FSize getSize() const;
const FSize getClientSize() const;
const FRect& getGeometry() const;
const FRect& getTermGeometry();
const FSize& getShadow() const;
const FRect& getGeometryWithShadow();
const FRect& getTermGeometryWithShadow();
virtual void setSize (const FSize& size, bool adjust = true);
virtual void setGeometry (const FRect& box, bool adjust = true);
virtual void setGeometry (const FPoint& p, const FSize& s, bool adjust = true);
virtual void setShadowSize (const FSize& size);
If you explicitly set the value of adjust
to false
when
using the setSize()
, setGeometry()
or setShadowSize()
mutators, the adjustSize()
method is no longer called automatically.
This can be used to prevent recursive adjustSize()
calls or to
avoid unnecessary adjustSize()
calls.
A modern terminal emulation like xterm has no fixed resolution.
They offer the possibility to change the height and width of the
terminal at any time. That triggers a resize-event that calls
the adjustSize()
method. This method allows adapting the widget
to a changed terminal size. You can override the adjustSize()
method to adjust the size and position of the widget. The method
adjustSize()
will also be called indirectly via calling methods
setGeometry()
, setX()
, setY()
, setPos()
, setWidth()
,
setHeight()
, setSize()
, setTopPadding()
, setLeftPadding()
,
setBottomPadding()
, setRightPadding()
, or setDoubleFlatLine()
.
Scalable dialogs derived from FDialog can change the dialog size by
clicking on the lower right corner of the window. You can intercept
a scaling action by overriding the setSize()
method and adjusting
the client widgets.
File: size-adjustment.cpp
#include <final/final.h>
using namespace finalcut;
class dialogWidget : public FDialog
{
public:
explicit dialogWidget (FWidget* parent = nullptr)
: FDialog{parent}
{ }
private:
void initLayout()
{
setText ("Dialog");
setResizeable();
button.setGeometry (FPoint{1, 1}, FSize{12, 1}, false);
input.setGeometry (FPoint{2, 3}, FSize{12, 1}, false);
// Set dialog geometry and calling adjustSize()
setGeometry (FPoint{25, 5}, FSize{40, 12});
setMinimumSize (FSize{25, 9});
FDialog::initLayout();
}
inline void checkMinValue (int& n)
{
if ( n < 1 ) // Checks and corrects the minimum value
n = 1;
}
void centerDialog()
{
auto x = int((getDesktopWidth() - getWidth()) / 2);
auto y = int((getDesktopHeight() - getHeight()) / 2);
checkMinValue(x);
checkMinValue(y);
setPos (FPoint{x, y}, false);
}
void adjustWidgets()
{
const auto bx = int(getWidth() - button.getWidth() - 3);
const auto by = int(getHeight() - 4);
button.setPos (FPoint{bx, by}, false);
input.setWidth (getWidth() - 4);
const auto ly = int(getHeight() / 2) - 1;
input.setY (ly, false);
}
void adjustSize() override
{
// Calling super class method adjustSize()
FDialog::adjustSize();
// Centers the dialog in the terminal
centerDialog();
// Adjust widgets before drawing
adjustWidgets();
}
void draw() override
{
// Calling super class method draw()
FDialog::draw();
print() << FPoint{3, 3}
<< FColorPair{FColor::Black, FColor::White}
<< "Text on "
<< FColorPair{FColor::Blue, FColor::Yellow}
<< "top";
}
FLineEdit input{"Middle", this};
FButton button{"&Bottom", this};
};
auto main (int argc, char* argv[]) -> int
{
FApplication app(argc, argv);
dialogWidget dialog(&app);
FWidget::setMainWidget(&dialog);
dialog.show();
return app.exec();
}
Figure 14. Dynamic layout
Note
You can close the dialog with the mouse, Shift+F10 or Ctrl+^
After entering the source code in size-adjustment.cpp you can compile the above program with gcc:
g++ size-adjustment.cpp -o size-adjustment -O2 -lfinal -std=c++14
The scroll view of the FScrollView
class allows users to view content
that is larger than the visible area. The FScrollView
widget displays
the horizontal and vertical scroll bar by default, only if the content size
requires it. You can controll this behavior by the two methods
setHorizontalScrollBarMode()
and setVerticalScrollBarMode()
.
setHorizontalScrollBarMode (finalcut::ScrollBarMode);
setVerticalScrollBarMode (finalcut::ScrollBarMode);
You pass the scroll bar visibility mode as a value of the enum type
finalcut::ScrollBarMode
.
enum class ScrollBarMode
{
Auto = 0, // Shows a scroll bar when area is larger than viewport
Hidden = 1, // Never shows a scroll bar
Scroll = 2 // Always shows a scroll bar
};
You can add widgets to an FScrollView
object as child objects and place
them (with a widget positioning method) on the scrollable area. If a client
widget gets the focus, it automatically scrolls the viewport to the focused
widget. You can use the methods scrollTo()
, scrollToX()
, scrollToY()
and scrollBy()
to set the scroll position of the viewport directly.
The FButtonGroup
widget uses FScrollView
to display more buttons
in the frame than the height allows.
File: scrollview.cpp
#include <utility>
#include <final/final.h>
using namespace finalcut;
class dialogWidget : public FDialog
{
public:
explicit dialogWidget (FWidget* parent = nullptr)
: FDialog{parent}
{
scrollview.setGeometry(FPoint{1, 1}, FSize{22, 11});
scrollview.setScrollSize(FSize{60, 27});
// Attention: getColorTheme() requires an initialized terminal
const auto& wc = getColorTheme();
setColor (wc->label.inactive_fg, wc->dialog.bg);
scrollview.clearArea();
FColorPair red (FColor::LightRed, wc->dialog.bg);
FColorPair black (FColor::Black, wc->dialog.bg);
FColorPair cyan (FColor::Cyan, wc->dialog.bg);
static std::vector<direction> d
{
{"NW", FPoint{3, 13}, FPoint{1, 1}, black},
{"N", FPoint{10, 13}, FPoint{21, 1}, red},
{"NE", FPoint{17, 13}, FPoint{41, 1}, black},
{"W", FPoint{3, 15}, FPoint{1, 10}, black},
{"*", FPoint{10, 15}, FPoint{21, 10}, black},
{"E", FPoint{17, 15}, FPoint{41, 10}, black},
{"SW", FPoint{3, 17}, FPoint{1, 19}, black},
{"S", FPoint{10, 17}, FPoint{21, 19}, cyan},
{"SE", FPoint{17, 17}, FPoint{41, 19}, black}
};
for (auto&& b : d)
{
scrollview.print() << std::get<2>(b) + FPoint{10, 5}
<< std::get<3>(b) << std::get<0>(b);
auto edit = new FLineEdit("direction " + std::get<0>(b), &scrollview);
edit->setGeometry(std::get<2>(b) + FPoint{1, 1}, FSize{17, 1});
auto btn = new FButton(std::move(std::get<0>(b)), this);
btn->setGeometry(std::get<1>(b), FSize{4, 1});
btn->unsetShadow();
btn->addCallback
(
"clicked",
this, &dialogWidget::cb_button, std::get<2>(b)
);
}
}
private:
typedef std::tuple<FString, FPoint, FPoint, FColorPair> direction;
void initLayout()
{
setText ("Dialog");
setGeometry (FPoint{28, 2}, FSize{24, 21});
FDialog::initLayout();
}
void cb_button (const FPoint& p)
{
scrollview.scrollTo(p);
}
FScrollView scrollview{this};
};
auto main (int argc, char* argv[]) -> int
{
FApplication app(argc, argv);
app.initTerminal(); // Terminal initialization
dialogWidget dialog(&app);
FWidget::setMainWidget(&dialog);
dialog.show();
return app.exec();
}
Figure 15. Dialog with a scrolling viewport
Note
You can close the dialog with the mouse, Shift+F10 or Ctrl+^
After entering the source code in scrollview.cpp you can compile the above program with gcc:
g++ scrollview.cpp -o scrollview -O2 -lfinal -std=c++14