Source code for the paper "Denoising of Geodetic Time Series Using Spatiotemporal Graph Neural Networks: Application to Slow Slip Event Extraction". Please cite the original paper when using this code:
Costantino, G., Giffard-Roisin, S., Mura, M. D., & Socquet, A. (2024). Denoising of Geodetic Time Series Using Spatiotemporal Graph Neural Networks: Application to Slow Slip Event Extraction. 10.1109/JSTARS.2024.3465270
Use the file requirements.txt
to install the correct dependencies for the project.
The code follows a sequence of steps:
- Generation of the synthetic database:
generate_synthetic_data.py
- Training of the model:
train.py
- Inference
- inference on the synthetic database:
inference_synthetic_data.py
- inference on real GNSS data:
inference_running_window.py
- inference on the synthetic database:
- Test: tables and figures
- test on the synthetic database:
test_synthetic_data.py
- test on real GNSS data:
test_real_data.py
- test on the synthetic database:
Additional files:
ablation_study.py
: reproduces the figures and results of the ablation study (Table II and Fig. 4 of the paper)adj_matrix_plots.py
: reproduces the figures on the optimal graph connections (Fig. 5 of the paper)
Note well: in order to reproduce the results presented in the paper (i.e., steps 1 to 3 should be skipped), the synthetic database as well as the prediction files can be downloaded at: 10.5281/zenodo.11283069
After downloading, the file placement should look like the following:
denois_synth_ts_cascadia_realgaps_extended_v5_200stations_6_7_depth_20_40.data
predictions
ablation
pred_denoising_test_data_ablation_notransf
pred_denoising_test_data_ablation_spatial_att_only
pred_denoising_test_data_ablation_temp_att_only
pred_denoising_test_data
pred_denoising_test_data_1d_xue_freymueller
pred_denoising_test_data_2d_unet