This repository has been archived by the owner on Feb 22, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 209
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #6 from gnes-ai/video-shot-detect
feat(preprocessor): add video shot boundary detector
- Loading branch information
Showing
9 changed files
with
355 additions
and
74 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,159 @@ | ||
# Tencent is pleased to support the open source community by making GNES available. | ||
# | ||
# Copyright (C) 2019 THL A29 Limited, a Tencent company. All rights reserved. | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
# pylint: disable=low-comment-ratio | ||
|
||
import io | ||
import subprocess as sp | ||
from typing import List, Callable | ||
|
||
import cv2 | ||
import numpy as np | ||
from PIL import Image | ||
import imagehash | ||
|
||
|
||
def get_video_frames(buffer_data: bytes, image_format: str = "cv2", | ||
**kwargs) -> List["np.ndarray"]: | ||
ffmpeg_cmd = ['ffmpeg', '-i', '-', '-f', 'image2pipe'] | ||
|
||
# example k,v pair: | ||
# (-s, 420*360) | ||
# (-vsync, vfr) | ||
# (-vf, select=eq(pict_type\,I)) | ||
for k, v in kwargs.items(): | ||
ffmpeg_cmd.append('-' + k) | ||
ffmpeg_cmd.append(v) | ||
|
||
# (-c:v, png) output bytes in png format | ||
# (-an, -sn) disable audio processing | ||
# (-) output to stdout pipeline | ||
ffmpeg_cmd += ['-c:v', 'png', '-an', '-sn', '-'] | ||
|
||
with sp.Popen( | ||
ffmpeg_cmd, stdin=sp.PIPE, stdout=sp.PIPE, bufsize=-1, | ||
shell=False) as pipe: | ||
stream, _ = pipe.communicate(buffer_data) | ||
|
||
# raw bytes for multiple PNGs. | ||
# split by PNG EOF b'\x89PNG' | ||
stream = stream.split(b'\x89PNG') | ||
|
||
if len(stream) <= 1: | ||
return [] | ||
|
||
# reformulate the full pngs for feature processings. | ||
if image_format == 'pil': | ||
frames = [ | ||
Image.open(io.BytesIO(b'\x89PNG' + _)) for _ in stream[1:] | ||
] | ||
elif image_format == 'cv2': | ||
frames = [ | ||
cv2.imdecode(np.frombuffer(b'\x89PNG' + _, np.uint8), 1) | ||
for _ in stream[1:] | ||
] | ||
else: | ||
raise NotImplementedError | ||
|
||
return frames | ||
|
||
|
||
def block_descriptor(image: "np.ndarray", | ||
descriptor_fn: Callable, | ||
num_blocks: int = 3) -> "np.ndarray": | ||
h, w, _ = image.shape # find shape of image and channel | ||
block_h = int(np.ceil(h / num_blocks)) | ||
block_w = int(np.ceil(w / num_blocks)) | ||
|
||
descriptors = [] | ||
for i in range(0, h, block_h): | ||
for j in range(0, w, block_w): | ||
block = image[i:i + block_h, j:j + block_w] | ||
descriptors.extend(descriptor_fn(block)) | ||
|
||
return np.array(descriptors) | ||
|
||
|
||
def pyramid_descriptor(image: "np.ndarray", | ||
descriptor_fn: Callable, | ||
max_level: int = 2) -> "np.ndarray": | ||
descriptors = [] | ||
for level in range(max_level + 1): | ||
num_blocks = 2**level | ||
descriptors.extend(block_descriptor(image, descriptor_fn, num_blocks)) | ||
|
||
return np.array(descriptors) | ||
|
||
|
||
def rgb_histogram(image: "np.ndarray") -> "np.ndarray": | ||
_, _, c = image.shape | ||
hist = [ | ||
cv2.calcHist([image], [i], None, [256], [0, 256]) for i in range(c) | ||
] | ||
# normalize hist | ||
hist = np.array([h / np.sum(h) for h in hist]).flatten() | ||
return hist | ||
|
||
|
||
def hsv_histogram(image: "np.ndarray") -> "np.ndarray": | ||
_, _, c = image.shape | ||
hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV) | ||
|
||
# sizes = [180, 256, 256] | ||
# ranges = [(0, 180), (0, 256), (0, 256)] | ||
|
||
# hist = [ | ||
# cv2.calcHist([hsv], [i], None, [sizes[i]], ranges[i]) for i in range(c) | ||
# ] | ||
|
||
hist = [cv2.calcHist([hsv], [i], None, [256], [0, 256]) for i in range(c)] | ||
# normalize hist | ||
hist = np.array([h / np.sum(h) for h in hist]).flatten() | ||
return hist | ||
|
||
|
||
def phash_descriptor(image: "np.ndarray") -> "imagehash.ImageHash": | ||
image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) | ||
return imagehash.phash(image) | ||
|
||
|
||
def compute_descriptor(image: "np.ndarray", | ||
method: str = "rgb_histogram", | ||
**kwargs) -> "np.array": | ||
funcs = { | ||
'rgb_histogram': rgb_histogram, | ||
'hsv_histogram': hsv_histogram, | ||
'block_rgb_histogram': lambda image: block_descriptor(image, rgb_histogram, kwargs.get("num_blocks", 3)), | ||
'block_hsv_histogram': lambda image: block_descriptor(image, hsv_histogram, kwargs.get("num_blocks", 3)), | ||
'pyramid_rgb_histogram': lambda image: pyramid_descriptor(image, rgb_histogram, kwargs.get("max_level", 2)), | ||
'pyramid_hsv_histogram': lambda image: pyramid_descriptor(image, hsv_histogram, kwargs.get("max_level", 2)), | ||
} | ||
return funcs[method](image) | ||
|
||
|
||
def compare_descriptor(descriptor1: "np.ndarray", | ||
descriptor2: "np.ndarray", | ||
metric: str = "chisqr") -> float: | ||
dist_metric = { | ||
"correlation": cv2.HISTCMP_CORREL, | ||
"chisqr": cv2.HISTCMP_CHISQR, | ||
"chisqr_alt": cv2.HISTCMP_CHISQR_ALT, | ||
"intersection": cv2.HISTCMP_INTERSECT, | ||
"bhattacharya": cv2.HISTCMP_BHATTACHARYYA, | ||
"hellinguer": cv2.HISTCMP_HELLINGER, | ||
"kl_div": cv2.HISTCMP_KL_DIV | ||
} | ||
|
||
return cv2.compareHist(descriptor1, descriptor2, dist_metric[metric]) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.