This repository has been archived by the owner on Feb 22, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 209
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
8150cf1
commit 92500f0
Showing
3 changed files
with
341 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,96 @@ | ||
# Tencent is pleased to support the open source community by making GNES available. | ||
# | ||
# Copyright (C) 2019 THL A29 Limited, a Tencent company. All rights reserved. | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from typing import List | ||
|
||
import numpy as np | ||
from PIL import Image | ||
|
||
from ..base import BaseVideoEncoder | ||
from ...helper import batching, batch_iterator, get_first_available_gpu | ||
|
||
|
||
class IncepMixtureEncoder(BaseVideoEncoder): | ||
|
||
def __init__(self, model_dir_inception: str, | ||
model_dir_mixture: str, | ||
batch_size: int = 64, | ||
select_layer: str = 'PreLogitsFlatten', | ||
use_cuda: bool = False, | ||
feature_size: int = 300, | ||
vocab_size: int = 28, | ||
cluster_size: int = 256, | ||
method: str = 'netvlad', | ||
input_size: int = 1536, | ||
multitask_method: str = 'Attention' | ||
*args, **kwargs): | ||
super().__init__(*args, **kwargs) | ||
self.model_dir_inception = model_dir_inception | ||
self.model_dir_mixture = model_dir_mixture | ||
self.batch_size = batch_size | ||
self.select_layer = select_layer | ||
self.use_cuda = use_cuda | ||
self.cluster_size = cluster_size | ||
self.feature_size = feature_size | ||
self.vocab_size = vocab_size | ||
self.method = method | ||
self.input_size = input_size | ||
self.multitask_method = multitask_method | ||
|
||
def post_init(self): | ||
import tensorflow as tf | ||
from ..image.inception_cores.inception_v4 import inception_v4 | ||
from ..image.inception_cores.inception_utils import inception_arg_scope | ||
from .mixture_core.incep_mixture import * | ||
import os | ||
os.environ['CUDA_VISIBLE_DEVICES'] = str(get_first_available_gpu()) | ||
|
||
g = tf.Graph() | ||
with g.as_default(): | ||
arg_scope = inception_arg_scope() | ||
inception_v4.default_image_size = self.inception_size_x | ||
self.inputs = tf.placeholder(tf.float32, (None, | ||
self.inception_size_x, | ||
self.inception_size_y, 3)) | ||
|
||
with tf.contrib.slim.arg_scope(arg_scope): | ||
self.logits, self.end_points = inception_v4(self.inputs, | ||
is_training=False, | ||
dropout_keep_prob=1.0) | ||
|
||
config = tf.ConfigProto(log_device_placement=False) | ||
if self._use_cuda: | ||
config.gpu_options.allow_growth = True | ||
self.sess = tf.Session(config=config) | ||
self.saver = tf.train.Saver() | ||
self.saver.restore(self.sess, self.model_dir_inception) | ||
|
||
g2 = tf.Graph() | ||
with g2.as_default(): | ||
config = tf.ConfigProto(log_device_placement=False) | ||
if self._use_cuda: | ||
config.gpu_options.allow_growth = True | ||
self.sess2 = tf.Session(config=config) | ||
self.mix_model = NetFV(feature_size=self.feature_size, | ||
cluster_size=self.cluster_size, | ||
vocab_size=self.vocab_size, | ||
input_size=self.input_size, | ||
use_2nd_label=True, | ||
multitask_method=self.multitask_method, | ||
method=self.method, | ||
is_training=False) | ||
saver = tf.train.Saver(max_to_keep=1) | ||
self.sess2.run(tf.global_variables_initializer()) | ||
saver.restore(self.sess2, self.model_dir_mixture) |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,245 @@ | ||
# Tencent is pleased to support the open source community by making GNES available. | ||
# | ||
# Copyright (C) 2019 THL A29 Limited, a Tencent company. All rights reserved. | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import math | ||
import tensorflow as tf | ||
import tensorflow.contrib.slim as slim | ||
|
||
|
||
class NetFV(): | ||
def __init__(self, feature_size, | ||
cluster_size, | ||
vocab_size, | ||
method='netvlad', | ||
input_size=None, | ||
use_2nd_label=False, | ||
vocab_size_2=None, | ||
add_batch_norm=True, | ||
is_training=False, | ||
use_weights=True, | ||
save_dir=None, | ||
multitask_method=None, | ||
l2_penalty=1e-6): | ||
if input_size == None: | ||
self.input_size = feature_size | ||
else: | ||
self.input_size = input_size | ||
self.feature_size = feature_size | ||
self.is_training = is_training | ||
self.vocab_size = vocab_size | ||
self.use_2nd_label = use_2nd_label | ||
self.vocab_size_2 = vocab_size_2 | ||
self.add_batch_norm = add_batch_norm | ||
self.cluster_size = cluster_size | ||
self.use_weights = use_weights | ||
self.l2_penalty = l2_penalty | ||
self.method = method | ||
self.multitask_method = multitask_method | ||
self.build_model() | ||
self.build_loss() | ||
|
||
@staticmethod | ||
def rand_init(feature_size): | ||
return tf.random_normal_initializer(stddev=1/math.sqrt(feature_size)) | ||
|
||
def build_model(self): | ||
self.feeds = tf.placeholder(tf.float32, [None, None, self.input_size]) | ||
#self.inputs = self.feeds | ||
self.inputs = tf.layers.dense(self.feeds, self.feature_size) | ||
self.weights = tf.placeholder(tf.float32, [None, self.vocab_size]) | ||
self.max_frames = tf.shape(self.inputs)[1] | ||
if self.method == 'fvnet': | ||
self.build_fvnet() | ||
elif self.method == 'netvlad': | ||
self.build_netvlad() | ||
elif self.method == 'pooling': | ||
self.build_pooling() | ||
|
||
def build_pooling(self): | ||
self.repre = tf.layers.dense(self.inputs, self.feature_size) | ||
self.repre = tf.reduce_max(self.repre, axis=1) | ||
|
||
def build_fvnet(self): | ||
reshaped_input = tf.reshape(self.inputs, [-1, self.feature_size]) | ||
cluster_weights = tf.get_variable("cluster_weights", | ||
[self.feature_size, self.cluster_size], | ||
initializer=NetFV.rand_init(self.feature_size)) | ||
|
||
covar_weights = tf.get_variable("covar_weights", | ||
[self.feature_size, self.cluster_size], | ||
initializer=NetFV.rand_init(self.feature_size)) | ||
|
||
covar_weights = tf.square(covar_weights) | ||
eps = tf.constant([1e-6]) | ||
covar_weights = tf.add(covar_weights,eps) | ||
|
||
tf.summary.histogram("cluster_weights", cluster_weights) | ||
activation = tf.matmul(reshaped_input, cluster_weights) | ||
if self.add_batch_norm: | ||
activation = slim.batch_norm(activation, | ||
center=True, | ||
scale=True, | ||
is_training=self.is_training, | ||
scope="cluster_bn") | ||
else: | ||
cluster_biases = tf.get_variable("cluster_biases", | ||
[self.cluster_size], | ||
initializer=NetFV.rand_init(self.feature_size)) | ||
tf.summary.histogram("cluster_biases", cluster_biases) | ||
activation += cluster_biases | ||
|
||
activation = tf.nn.softmax(activation) | ||
tf.summary.histogram("cluster_output", activation) | ||
|
||
activation = tf.reshape(activation, [-1, self.max_frames, self.cluster_size]) | ||
|
||
a_sum = tf.reduce_sum(activation, -2, keepdims=True) | ||
|
||
cluster_weights2 = tf.scalar_mul(0.01, cluster_weights) | ||
|
||
a = tf.multiply(a_sum, cluster_weights2) | ||
|
||
activation = tf.transpose(activation,perm=[0, 2, 1]) | ||
|
||
reshaped_input = tf.reshape(reshaped_input, | ||
[-1, self.max_frames, self.feature_size]) | ||
fv1 = tf.matmul(activation, reshaped_input) | ||
|
||
fv1 = tf.transpose(fv1, perm=[0, 2, 1]) | ||
|
||
# computing second order FV | ||
a2 = tf.multiply(a_sum, tf.square(cluster_weights2)) | ||
|
||
b2 = tf.multiply(fv1, cluster_weights2) | ||
fv2 = tf.matmul(activation, tf.square(reshaped_input)) | ||
|
||
fv2 = tf.transpose(fv2, perm=[0, 2, 1]) | ||
fv2 = tf.add_n([a2, fv2, tf.scalar_mul(-2, b2)]) | ||
|
||
fv2 = tf.divide(fv2, tf.square(covar_weights)) | ||
fv2 = tf.subtract(fv2, a_sum) | ||
|
||
fv2 = tf.reshape(fv2, [-1, self.cluster_size*self.feature_size]) | ||
fv2 = tf.nn.l2_normalize(fv2, 1) | ||
fv2 = tf.reshape(fv2, [-1, self.cluster_size*self.feature_size]) | ||
fv2 = tf.nn.l2_normalize(fv2, 1) | ||
|
||
fv1 = tf.subtract(fv1, a) | ||
fv1 = tf.divide(fv1, covar_weights) | ||
fv1 = tf.nn.l2_normalize(fv1, 1) | ||
fv1 = tf.reshape(fv1, [-1, self.cluster_size*self.feature_size]) | ||
fv1 = tf.nn.l2_normalize(fv1, 1) | ||
|
||
self.repre = tf.concat([fv1, fv2], 1) | ||
self.repre = tf.layers.dense(self.repre, self.feature_size) | ||
|
||
def build_netvlad(self): | ||
reshaped_input = tf.reshape(self.inputs, [-1, self.feature_size]) | ||
cluster_weights = tf.get_variable("cluster_weights", | ||
[self.feature_size, self.cluster_size], | ||
initializer=NetFV.rand_init(self.feature_size)) | ||
activation = tf.matmul(reshaped_input, cluster_weights) | ||
if self.add_batch_norm: | ||
activation = slim.batch_norm(activation, | ||
center=True, | ||
scale=True, | ||
is_training=self.is_training, | ||
scope="cluster_bn") | ||
else: | ||
cluster_biases = tf.get_variable("cluster_biases", | ||
[self.cluster_size], | ||
initializer=NetFV.rand_init(self.feature_size)) | ||
activation += cluster_biases | ||
activation = tf.nn.softmax(activation) | ||
activation = tf.reshape(activation, [-1, self.max_frames, self.cluster_size]) | ||
|
||
a_sum = tf.reduce_sum(activation, -2, keep_dims=True) | ||
|
||
cluster_weights2 = tf.get_variable("cluster_weights2", | ||
[1, self.feature_size, self.cluster_size], | ||
initializer=NetFV.rand_init(self.feature_size)) | ||
|
||
a = tf.multiply(a_sum, cluster_weights2) | ||
activation = tf.transpose(activation, perm=[0, 2, 1]) | ||
|
||
reshaped_input = tf.reshape(reshaped_input, | ||
[-1, self.max_frames, self.feature_size]) | ||
vlad = tf.matmul(activation, reshaped_input) | ||
vlad = tf.transpose(vlad, perm=[0, 2, 1]) | ||
vlad = tf.subtract(vlad, a) | ||
|
||
vlad = tf.nn.l2_normalize(vlad, 1) | ||
|
||
vlad = tf.reshape(vlad, [-1, self.cluster_size * self.feature_size]) | ||
vlad = tf.nn.l2_normalize(vlad, 1) | ||
self.repre = vlad | ||
|
||
def build_loss(self): | ||
self.probabilities = tf.layers.dense(self.repre, | ||
self.vocab_size, | ||
activation=tf.nn.tanh) | ||
self.probabilities = tf.layers.dense(self.probabilities, self.vocab_size) | ||
self.probabilities = tf.nn.softmax(self.probabilities) | ||
|
||
self.label = tf.placeholder(tf.int32, [None, self.vocab_size]) | ||
logits = tf.cast(self.label, tf.float32) | ||
if self.use_weights: | ||
logits = logits * self.weights | ||
self.loss = - tf.log(tf.reduce_sum(logits * self.probabilities, axis=1)+1e-9) | ||
self.loss = tf.reduce_mean(self.loss) | ||
self.pred =tf.argmax(self.probabilities, 1) | ||
self.avg_diff = tf.cast(tf.equal(tf.argmax(self.label, 1), self.pred), tf.float32) | ||
self.avg_diff = tf.reduce_mean(self.avg_diff) | ||
|
||
# add 2nd layer labels | ||
if self.use_2nd_label: | ||
self.label_2 = tf.placeholder(tf.int32, [None, self.vocab_size_2]) | ||
logits2 = tf.cast(self.label_2, tf.float32) | ||
|
||
if self.multitask_method is None: | ||
self.probabilities2 = tf.layers.dense(self.repre, | ||
self.vocab_size_2, | ||
activation=tf.nn.tanh) | ||
self.probabilities2 = tf.layers.dense(self.probabilities2, self.vocab_size_2) | ||
self.probabilities2 = tf.nn.softmax(self.probabilities2) | ||
|
||
elif self.multitask_method == 'Attention': | ||
self.x = tf.get_variable('emb', | ||
shape=[self.vocab_size, self.feature_size], | ||
dtype=tf.float32, | ||
initializer=NetFV.rand_init(self.feature_size)) | ||
self.emb_label = tf.matmul(self.probabilities, self.x) | ||
self.emb_concat = tf.concat([self.emb_label, self.repre], axis=1) | ||
self.probabilities2 = tf.layers.dense(self.emb_concat, | ||
self.vocab_size_2, | ||
activation=tf.nn.tanh) | ||
self.probabilities2 = tf.layers.dense(self.probabilities2, | ||
self.vocab_size_2) | ||
self.probabilities2 = tf.nn.softmax(self.probabilities2) | ||
|
||
self.loss += tf.reduce_mean(-tf.log( | ||
tf.reduce_sum(logits2*self.probabilities2, axis=1)+1e-9)) | ||
self.pred2 = tf.argmax(self.probabilities2, 1) | ||
self.avg_diff2 = tf.cast(tf.equal(tf.argmax(self.label_2, 1), self.pred2), tf.float32) | ||
self.avg_diff2 = tf.reduce_mean(self.avg_diff2) | ||
|
||
self.optimizer = tf.train.AdamOptimizer(learning_rate=0.0005, | ||
epsilon=1e-08, | ||
name='adam') | ||
self.train_op = slim.learning.create_train_op(self.loss, self.optimizer) | ||
self.eval_res = {'loss': self.loss, 'avg_diff': self.avg_diff} | ||
if self.use_2nd_label: | ||
self.eval_res['avg_diff2'] = self.avg_diff2 | ||
|