This repository has been archived by the owner on Feb 22, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 209
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat(encoder): add onnxruntime suport for image encoder
Signed-off-by: raccoonliukai <[email protected]>
- Loading branch information
1 parent
8150cf1
commit f03e6fc
Showing
7 changed files
with
184 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,69 @@ | ||
# Tencent is pleased to support the open source community by making GNES available. | ||
# | ||
# Copyright (C) 2019 THL A29 Limited, a Tencent company. All rights reserved. | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import os | ||
from typing import List, Callable | ||
|
||
import numpy as np | ||
|
||
from ..base import BaseImageEncoder | ||
from ...helper import batching | ||
|
||
|
||
class BaseONNXImageEncoder(BaseImageEncoder): | ||
|
||
def __init__(self, model_name: str, | ||
model_dir: str, | ||
batch_size: int = 64, | ||
use_cuda: bool = False, | ||
*args, **kwargs): | ||
super().__init__(*args, **kwargs) | ||
|
||
self.batch_size = batch_size | ||
self.model_dir = model_dir | ||
self.model_name = model_name | ||
self._use_cuda = use_cuda | ||
|
||
def post_init(self): | ||
import onnxruntime as ort | ||
|
||
self.sess = ort.InferenceSession(self.model_dir + '/' + self.model_name) | ||
inputs_info = self.sess.get_inputs() | ||
|
||
if len(inputs_info) != 1: | ||
raise ValueError('Now only support encoder with one input') | ||
else: | ||
self.input_name = inputs_info[0].name | ||
self.input_shape = inputs_info[0].shape | ||
self.input_type = inputs_info[0].type | ||
self.batch_size = self.input_shape[0] | ||
|
||
@batching | ||
def encode(self, img: List['np.ndarray'], *args, **kwargs) -> np.ndarray: | ||
pad_batch = 0 | ||
if len(img) != self.input_shape[0]: | ||
pad_batch = self.input_shape[0] - len(img) | ||
for i in range(pad_batch): | ||
img.append(np.zeros_like(img[0])) | ||
|
||
img_ = np.array(img, dtype=np.float32).transpose(0, 3, 1, 2) | ||
if list(img_.shape) != self.input_shape: | ||
raise ValueError('Map size not match net, expect', self.input_shape, ',got', img_.shape) | ||
|
||
result_npy = self.sess.run(None, {self.input_name: img_}) | ||
if pad_batch != 0: | ||
return result_npy[0][0:len(img)] | ||
else: | ||
return result_npy[0] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,89 @@ | ||
import copy | ||
import os | ||
import unittest | ||
import zipfile | ||
|
||
from gnes.encoder.image.onnx import BaseONNXImageEncoder | ||
from gnes.preprocessor.base import BaseUnaryPreprocessor | ||
from gnes.preprocessor.image.sliding_window import VanillaSlidingPreprocessor | ||
from gnes.proto import gnes_pb2, blob2array | ||
|
||
|
||
def img_process_for_test(dirname): | ||
zipfile_ = zipfile.ZipFile(os.path.join(dirname, 'imgs/test.zip'), "r") | ||
all_bytes = [zipfile_.open(v).read() for v in zipfile_.namelist()] | ||
test_img = [] | ||
for raw_bytes in all_bytes: | ||
d = gnes_pb2.Document() | ||
d.raw_bytes = raw_bytes | ||
test_img.append(d) | ||
|
||
test_img_all_preprocessor = [] | ||
for preprocessor in [BaseUnaryPreprocessor(doc_type=gnes_pb2.Document.IMAGE), | ||
VanillaSlidingPreprocessor()]: | ||
test_img_copy = copy.deepcopy(test_img) | ||
for img in test_img_copy: | ||
preprocessor.apply(img) | ||
test_img_all_preprocessor.append([blob2array(chunk.blob) | ||
for img in test_img_copy for chunk in img.chunks]) | ||
return test_img_all_preprocessor | ||
|
||
|
||
class TestONNXImageEncoder(unittest.TestCase): | ||
|
||
def setUp(self): | ||
dirname = os.path.dirname(__file__) | ||
self.dump_path = os.path.join(dirname, 'model.bin') | ||
self.test_img = img_process_for_test(dirname) | ||
self.vgg_yaml = os.path.join(dirname, 'yaml', 'onnx-vgg-encoder.yml') | ||
self.res_yaml = os.path.join(dirname, 'yaml', 'onnx-resnet-encoder.yml') | ||
self.inception_yaml = os.path.join(dirname, 'yaml', 'onnx-inception-encoder.yml') | ||
self.mobilenet_yaml = os.path.join(dirname, 'yaml', 'onnx-mobilenet-encoder.yml') | ||
|
||
def test_vgg_encoding(self): | ||
self.encoder = BaseONNXImageEncoder.load_yaml(self.vgg_yaml) | ||
for test_img in self.test_img: | ||
vec = self.encoder.encode(test_img) | ||
print("the length of data now is:", len(test_img)) | ||
self.assertEqual(vec.shape[0], len(test_img)) | ||
self.assertEqual(vec.shape[1], 1000) | ||
|
||
def test_resnet_encoding(self): | ||
self.encoder = BaseONNXImageEncoder.load_yaml(self.res_yaml) | ||
for test_img in self.test_img: | ||
vec = self.encoder.encode(test_img) | ||
print("the length of data now is:", len(test_img)) | ||
self.assertEqual(vec.shape[0], len(test_img)) | ||
self.assertEqual(vec.shape[1], 1000) | ||
|
||
def test_inception_encoding(self): | ||
self.encoder = BaseONNXImageEncoder.load_yaml(self.inception_yaml) | ||
for test_img in self.test_img: | ||
vec = self.encoder.encode(test_img) | ||
print("the length of data now is:", len(test_img)) | ||
self.assertEqual(vec.shape[0], len(test_img)) | ||
self.assertEqual(vec.shape[1], 1000) | ||
|
||
def test_mobilenet_encoding(self): | ||
self.encoder = BaseONNXImageEncoder.load_yaml(self.mobilenet_yaml) | ||
for test_img in self.test_img: | ||
vec = self.encoder.encode(test_img) | ||
print("the length of data now is:", len(test_img)) | ||
self.assertEqual(vec.shape[0], len(test_img)) | ||
self.assertEqual(vec.shape[1], 1000) | ||
|
||
def test_dump_load(self): | ||
self.encoder = BaseONNXImageEncoder.load_yaml(self.inception_yaml) | ||
|
||
self.encoder.dump(self.dump_path) | ||
|
||
vgg_encoder2 = BaseONNXImageEncoder.load(self.dump_path) | ||
|
||
for test_img in self.test_img: | ||
vec = vgg_encoder2.encode(test_img) | ||
self.assertEqual(vec.shape[0], len(test_img)) | ||
self.assertEqual(vec.shape[1], 1000) | ||
|
||
def tearDown(self): | ||
if os.path.exists(self.dump_path): | ||
os.remove(self.dump_path) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
!BaseONNXImageEncoder | ||
parameter: | ||
model_dir: ${INCEPTION_MODEL} | ||
model_name: inception_v2.onnx | ||
gnes_config: | ||
is_trained: true |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
!BaseONNXImageEncoder | ||
parameter: | ||
model_dir: ${MOBILENET_MODEL} | ||
model_name: mobilenetv2.onnx | ||
gnes_config: | ||
is_trained: true |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
!BaseONNXImageEncoder | ||
parameter: | ||
model_dir: ${RESNET_MODEL} | ||
model_name: resnet50.onnx | ||
gnes_config: | ||
is_trained: true |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
!BaseONNXImageEncoder | ||
parameter: | ||
model_dir: ${VGG_MODEL} | ||
model_name: vgg16.onnx | ||
gnes_config: | ||
is_trained: true |