Skip to content

gqy4166000/ijrs_dasr

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 

Repository files navigation

Dual-Det : A Fast Detector for Oriented Object Detection in Aerial Images

The code is useful for DOTA, HRSC2016 and UCAS-AOD

How to get dataset?

  • Dota: Dota is a large-scale dataset for object detection in aerial images. It can be used to develop and evaluate object detectors in aerial images. You can get the dataset via their home page.
  • HRSC2016
  • UCAS-AOD

Installation

  1. Create a new conda environment and install pytorch v1.0+ and torchvision
  2. Clone code
    git clone https://github.com/gqy4166000/DASR.git
  1. Install the requirements
    pip install -r requirements.txt
  1. Compile polyiou
    cd src
    sudo apt-get install swig
    swig -c++ -python polyiou.i
    python setup.py build_ext --inplace
    cd ..
  1. Compile deformable convolutional
    cd src/lib/models/networks/DCNv2
    ./make.sh

Usage

Download the dataset and copy the partitioned data to the \data folder in the following format. For DOTA, images and labels need to be splited for use(by ImgSplit.py or ImgSplit_multi_process.py).

.
├── src
└── data
    ├── Dota1.0*
        ├── train_sp*
            ├──images
            └──labelTxt
        └── val_sp*
            ├──images
            └──labelTxt

*mean that you can change the folder name and the path name in the DOTA file must also be changed.

  • Train
    python main.py --dataset dota --exp_id dota_train --gpus 0,1 --batch_size 32
  • Val
    python main.py --dataset dota --exp_id dota_val --gpus 0 --test

You can adjust learning parameters in opt.py, and select single Angle, double Angle, and other branches in cfg.py.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published