Skip to content

Commit

Permalink
Adds a monitoring dashboard to Gradio apps that can be used to view u…
Browse files Browse the repository at this point in the history
…sage (#8478)

* changes

* add changeset

* changes

* changes

* changes

* add changeset

* changes

---------

Co-authored-by: Ali Abid <[email protected]>
Co-authored-by: gradio-pr-bot <[email protected]>
Co-authored-by: Abubakar Abid <[email protected]>
  • Loading branch information
4 people authored Jun 6, 2024
1 parent f9406b4 commit 73e1108
Show file tree
Hide file tree
Showing 6 changed files with 155 additions and 2 deletions.
5 changes: 5 additions & 0 deletions .changeset/common-paws-grab.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
---
"gradio": minor
---

feat:Adds a monitoring dashboard to Gradio apps that can be used to view usage
91 changes: 91 additions & 0 deletions gradio/analytics_dashboard.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
import random
import time

import pandas as pd

import gradio as gr

data = {"data": {}}

with gr.Blocks() as demo:
with gr.Row():
selected_function = gr.Dropdown(
["All"],
value="All",
label="Endpoint",
info="Select the function to see analytics for, or 'All' for aggregate.",
scale=2,
)
demo.load(
lambda: gr.Dropdown(
choices=["All"]
+ list({row["function"] for row in data["data"].values()}) # type: ignore
),
None,
selected_function,
)
timespan = gr.Dropdown(
["All Time", "24 hours", "1 hours", "10 minutes"],
value="All Time",
label="Timespan",
info="Duration to see data for.",
)
with gr.Group():
with gr.Row():
unique_users = gr.Label(label="Unique Users")
unique_requests = gr.Label(label="Unique Requests")
process_time = gr.Label(label="Avg Process Time")
plot = gr.BarPlot(
x="time",
y="count",
color="status",
title="Requests over Time",
y_title="Requests",
width=600,
)

@gr.on(
[demo.load, selected_function.change, timespan.change],
inputs=[selected_function, timespan],
outputs=[unique_users, unique_requests, process_time, plot],
)
def load_dfs(function, timespan):
df = pd.DataFrame(data["data"].values())
if df.empty:
return 0, 0, 0, gr.skip()
df["time"] = pd.to_datetime(df["time"], unit="s")
df_filtered = df if function == "All" else df[df["function"] == function]
if timespan != "All Time":
df_filtered = df_filtered[
df_filtered["time"] > pd.Timestamp.now() - pd.Timedelta(timespan)
]

df_filtered["time"] = df_filtered["time"].dt.floor("min")
plot = df_filtered.groupby(["time", "status"]).size().reset_index(name="count") # type: ignore
mean_process_time_for_success = df_filtered[df_filtered["status"] == "success"][
"process_time"
].mean()

return (
df_filtered["session_hash"].nunique(),
df_filtered.shape[0],
round(mean_process_time_for_success, 2),
plot,
)


if __name__ == "__main__":
data["data"] = {
random.randint(0, 1000000): {
"time": time.time() - random.randint(0, 60 * 60 * 24 * 3),
"status": random.choice(
["success", "success", "failure", "pending", "queued"]
),
"function": random.choice(["predict", "chat", "chat"]),
"process_time": random.randint(0, 10),
"session_hash": str(random.randint(0, 4)),
}
for r in range(random.randint(100, 200))
}

demo.launch()
6 changes: 6 additions & 0 deletions gradio/blocks.py
Original file line number Diff line number Diff line change
Expand Up @@ -2178,6 +2178,7 @@ def launch(
auth_dependency: Callable[[fastapi.Request], str | None] | None = None,
max_file_size: str | int | None = None,
_frontend: bool = True,
enable_monitoring: bool = False,
) -> tuple[FastAPI, str, str]:
"""
Launches a simple web server that serves the demo. Can also be used to create a
Expand Down Expand Up @@ -2397,6 +2398,11 @@ def reverse(text):
else:
self.share = share

if enable_monitoring:
print(
f"Monitoring URL: {self.local_url}monitoring/{self.app.analytics_key}"
)

# If running in a colab or not able to access localhost,
# a shareable link must be created.
if (
Expand Down
26 changes: 24 additions & 2 deletions gradio/queueing.py
Original file line number Diff line number Diff line change
Expand Up @@ -114,6 +114,7 @@ def __init__(
self.default_concurrency_limit = self._resolve_concurrency_limit(
default_concurrency_limit
)
self.event_analytics: dict[str, dict[str, float | str | None]] = {}

def start(self):
self.active_jobs = [None] * self.max_thread_count
Expand Down Expand Up @@ -227,6 +228,13 @@ async def push(
"Event not found in queue. If you are deploying this Gradio app with multiple replicas, please enable stickiness to ensure that all requests from the same user are routed to the same instance."
) from e
event_queue.queue.append(event)
self.event_analytics[event._id] = {
"time": time.time(),
"status": "queued",
"process_time": None,
"function": fn.api_name,
"session_hash": body.session_hash,
}

self.broadcast_estimations(event.concurrency_id, len(event_queue.queue) - 1)

Expand Down Expand Up @@ -294,6 +302,8 @@ async def start_processing(self) -> None:
event_queue.current_concurrency += 1
start_time = time.time()
event_queue.start_times_per_fn[events[0].fn].add(start_time)
for event in events:
self.event_analytics[event._id]["status"] = "processing"
process_event_task = run_coro_in_background(
self.process_events, events, batch, start_time
)
Expand Down Expand Up @@ -470,6 +480,7 @@ async def process_events(
) -> None:
awake_events: list[Event] = []
fn = events[0].fn
success = False
try:
for event in events:
if event.alive:
Expand Down Expand Up @@ -587,16 +598,20 @@ async def process_events(
for e, event in enumerate(awake_events):
if batch and "data" in output:
output["data"] = list(zip(*response.get("data")))[e]
success = response is not None
self.send_message(
event,
ProcessCompletedMessage(
output=output,
success=response is not None,
success=success,
),
)
end_time = time.time()
if response is not None:
self.process_time_per_fn[events[0].fn].add(end_time - begin_time)
duration = end_time - begin_time
self.process_time_per_fn[events[0].fn].add(duration)
for event in events:
self.event_analytics[event._id]["process_time"] = duration
except Exception as e:
traceback.print_exc()
finally:
Expand All @@ -620,6 +635,13 @@ async def process_events(
# to start "from scratch"
await self.reset_iterators(event._id)

if event in awake_events:
self.event_analytics[event._id]["status"] = (
"success" if success else "failed"
)
else:
self.event_analytics[event._id]["status"] = "cancelled"

async def reset_iterators(self, event_id: str):
# Do the same thing as the /reset route
app = self.server_app
Expand Down
28 changes: 28 additions & 0 deletions gradio/routes.py
Original file line number Diff line number Diff line change
Expand Up @@ -164,6 +164,8 @@ def __init__(
):
self.tokens = {}
self.auth = None
self.analytics_key = secrets.token_urlsafe(16)
self.analytics_enabled = False
self.blocks: gradio.Blocks | None = None
self.state_holder = StateHolder()
self.iterators: dict[str, AsyncIterator] = {}
Expand Down Expand Up @@ -1165,6 +1167,32 @@ def robots_txt():
else:
return "User-agent: *\nDisallow: "

@app.get("/monitoring")
async def analytics_login():
print(
f"Monitoring URL: {app.get_blocks().local_url}monitoring/{app.analytics_key}"
)
return HTMLResponse("See console for monitoring URL.")

@app.get("/monitoring/{key}")
async def analytics_dashboard(key: str):
if key == app.analytics_key:
analytics_url = f"/monitoring/{app.analytics_key}/dashboard"
if not app.analytics_enabled:
from gradio.analytics_dashboard import data
from gradio.analytics_dashboard import demo as dashboard

mount_gradio_app(app, dashboard, path=analytics_url)
dashboard._queue.start()
analytics = app.get_blocks()._queue.event_analytics
data["data"] = analytics
app.analytics_enabled = True
return RedirectResponse(
url=analytics_url, status_code=status.HTTP_302_FOUND
)
else:
raise HTTPException(status_code=403, detail="Invalid key.")

return app


Expand Down
1 change: 1 addition & 0 deletions guides/03_additional-features/01_queuing.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,3 +13,4 @@ This limits the number of requests processed for this event listener at a single

See the [docs on queueing](/docs/gradio/interface#interface-queue) for more details on configuring the queuing parameters.

You can see analytics on the number and status of all requests processed by the queue by visiting the `/monitoring` endpoint of your app. This endpoint will print a secret URL to your console that links to the full analytics dashboard.

0 comments on commit 73e1108

Please sign in to comment.