-
Notifications
You must be signed in to change notification settings - Fork 41
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
added first draft of interactive subcommands
- Loading branch information
Showing
3 changed files
with
429 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,158 @@ | ||
import argparse | ||
|
||
import numpy as np | ||
import json | ||
|
||
from haddock import log | ||
from pathlib import Path | ||
|
||
from haddock.gear.config import load as read_config | ||
from fcc.scripts import calc_fcc_matrix, cluster_fcc | ||
|
||
from haddock.libs.libontology import ModuleIO | ||
|
||
from haddock.libs.libclust import write_structure_list | ||
|
||
|
||
def add_clustfcc_arguments(clustfcc_subcommand): | ||
clustfcc_subcommand.add_argument( | ||
"clustfcc_dir", | ||
help="The clustfcc directory to recluster.", | ||
) | ||
|
||
clustfcc_subcommand.add_argument( | ||
"-f", | ||
"--fraction", | ||
help="fraction of common contacts to not be considered a singleton model.", | ||
required=False, | ||
type=float, | ||
) | ||
|
||
clustfcc_subcommand.add_argument( | ||
"-s", | ||
"--strictness", | ||
help="fraction of common contacts to be considered to be part of the same cluster.", | ||
required=False, | ||
type=float, | ||
) | ||
|
||
clustfcc_subcommand.add_argument( | ||
"-t", | ||
"--threshold", | ||
help="cluster population threshold.", | ||
required=False, | ||
type=int, | ||
) | ||
|
||
return clustfcc_subcommand | ||
|
||
def reclustfcc(clustfcc_dir, fraction=None, strictness=None, threshold=None): | ||
"""Recluster the models in the clustfcc directory.""" | ||
log.info(f"Reclustering {clustfcc_dir}") | ||
|
||
# create the interactive folder | ||
run_dir = Path(clustfcc_dir).parent | ||
clustfcc_name = Path(clustfcc_dir).name | ||
outdir = Path(run_dir, f"{clustfcc_name}_interactive") | ||
outdir.mkdir(exist_ok=True) | ||
|
||
# create an io object | ||
io = ModuleIO() | ||
filename = Path(clustfcc_dir, "io.json") | ||
io.load(filename) | ||
models = io.input | ||
|
||
# load the original clustering parameters via json | ||
clustfcc_params = read_config(Path(clustfcc_dir, "params.cfg")) | ||
key = list(clustfcc_params['final_cfg'].keys())[0] | ||
clustfcc_params = clustfcc_params['final_cfg'][key] | ||
log.info(f"Previous clustering parameters: {clustfcc_params}") | ||
|
||
# adjust the parameters | ||
if fraction is not None: | ||
clustfcc_params["fraction"] = fraction | ||
if strictness is not None: | ||
clustfcc_params["strictness"] = strictness | ||
if threshold is not None: | ||
clustfcc_params["threshold"] = threshold | ||
|
||
# load the fcc matrix | ||
pool = cluster_fcc.read_matrix( | ||
Path(clustfcc_dir, "fcc.matrix"), | ||
clustfcc_params['fraction_cutoff'], | ||
clustfcc_params['strictness'], | ||
) | ||
|
||
cluster_check = False | ||
while not cluster_check: | ||
for threshold in range(clustfcc_params['threshold'], 0, -1): | ||
log.info(f'Clustering with threshold={threshold}') | ||
_, clusters = cluster_fcc.cluster_elements( | ||
pool, | ||
threshold=threshold, | ||
) | ||
if not clusters: | ||
log.info( | ||
"[WARNING] No cluster was found, decreasing threshold!" | ||
) | ||
else: | ||
cluster_check = True | ||
# pass the actual threshold back to the param dict | ||
# because it will be use in the detailed output | ||
clustfcc_params['threshold'] = threshold | ||
break | ||
if not cluster_check: | ||
# No cluster was obtained in any threshold | ||
cluster_check = True | ||
|
||
# Prepare output and read the elements | ||
clt_dic = {} | ||
if clusters: | ||
# write the classic output file for compatibility reasons | ||
log.info('Saving output to cluster.out') | ||
cluster_out = Path('cluster.out') | ||
with open(cluster_out, 'w') as fh: | ||
cluster_fcc.output_clusters(fh, clusters) | ||
fh.close() | ||
clt_centers = {} | ||
for clt in clusters: | ||
cluster_id = clt.name | ||
cluster_center_id = clt.center.name - 1 | ||
cluster_center_pdb = models[cluster_center_id] | ||
clt_dic[cluster_id] = [] | ||
clt_centers[cluster_id] = cluster_center_pdb | ||
clt_dic[cluster_id].append(cluster_center_pdb) | ||
for model in clt.members: | ||
model_id = model.name | ||
model_pdb = models[model_id - 1] | ||
clt_dic[cluster_id].append(model_pdb) | ||
# Rank the clusters | ||
# they are sorted by the topX (threshold) models in each cluster | ||
score_dic = {} | ||
for clt_id in clt_dic: | ||
score_l = [p.score for p in clt_dic[clt_id]] | ||
score_l.sort() | ||
denom = float(min(threshold, len(score_l))) | ||
top4_score = sum(score_l[:threshold]) / denom | ||
score_dic[clt_id] = top4_score | ||
sorted_score_dic = sorted(score_dic.items(), key=lambda k: k[1]) | ||
# Add this info to the models | ||
output_models = [] | ||
for cluster_rank, _e in enumerate(sorted_score_dic, start=1): | ||
cluster_id, _ = _e | ||
# sort the models by score | ||
clt_dic[cluster_id].sort() | ||
# rank the models | ||
for model_ranking, pdb in enumerate(clt_dic[cluster_id], | ||
start=1): | ||
pdb.clt_id = cluster_id | ||
pdb.clt_rank = cluster_rank | ||
pdb.clt_model_rank = model_ranking | ||
output_models.append(pdb) | ||
# Write unclustered structures | ||
write_structure_list(models, | ||
output_models, | ||
out_fname=Path(outdir,"clustfcc.tsv")) | ||
|
||
return outdir | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,122 @@ | ||
import argparse | ||
import numpy as np | ||
import json | ||
|
||
from haddock import log | ||
from pathlib import Path | ||
|
||
from haddock.gear.config import load as read_config | ||
|
||
from haddock.libs.libontology import ModuleIO | ||
|
||
from haddock.modules.analysis.clustrmsd.clustrmsd import get_clusters, rank_clusters, write_clusters | ||
from haddock.libs.libclust import write_structure_list | ||
|
||
|
||
|
||
def add_clustrmsd_arguments(clustrmsd_subcommand): | ||
clustrmsd_subcommand.add_argument( | ||
"clustrmsd_dir", | ||
help="The clustrmsd directory to recluster.", | ||
) | ||
|
||
clustrmsd_subcommand.add_argument( | ||
"-n", | ||
"--n_clusters", | ||
help="number of clusters to generate.", | ||
required=False, | ||
type=int, | ||
) | ||
|
||
clustrmsd_subcommand.add_argument( | ||
"-d", | ||
"--distance", | ||
help="cutoff distance.", | ||
required=False, | ||
type=int, | ||
) | ||
|
||
clustrmsd_subcommand.add_argument( | ||
"-t", | ||
"--threshold", | ||
help="cluster population threshold.", | ||
required=False, | ||
type=int, | ||
) | ||
|
||
return clustrmsd_subcommand | ||
|
||
def reclustrmsd(clustrmsd_dir, n_clusters=None, distance=None, threshold=None): | ||
"""Recluster the models in the clustrmsd directory.""" | ||
log.info(f"Reclustering {clustrmsd_dir}") | ||
# load the original clustering parameters via json | ||
clustrmsd_params = read_config(Path(clustrmsd_dir, "params.cfg")) | ||
key = list(clustrmsd_params['final_cfg'].keys())[0] | ||
clustrmsd_params = clustrmsd_params['final_cfg'][key] | ||
log.info(f"Previous clustering parameters: {clustrmsd_params}") | ||
|
||
# adjust the parameters | ||
if n_clusters is not None: | ||
clustrmsd_params["tolerance"] = n_clusters | ||
clustrmsd_params["criterion"] = "maxclust" | ||
else: | ||
if distance is not None: | ||
clustrmsd_params["tolerance"] = distance | ||
clustrmsd_params["criterion"] = "distance" | ||
|
||
if threshold is not None: | ||
clustrmsd_params["threshold"] = threshold | ||
|
||
# load the clustering dendrogram | ||
dendrogram = np.loadtxt(Path(clustrmsd_dir, "dendrogram.txt")) | ||
|
||
## get the clusters | ||
cluster_arr = get_clusters(dendrogram, clustrmsd_params["tolerance"], clustrmsd_params["criterion"]) | ||
log.info(f"clusters {cluster_arr}") | ||
|
||
# we got the clusters, now we need write down (part of) the information available in the clustrmsd directory | ||
run_dir = Path(clustrmsd_dir).parent | ||
clustrmsd_name = Path(clustrmsd_dir).name | ||
# create the interactive folder | ||
outdir = Path(run_dir, f"{clustrmsd_name}_interactive") | ||
outdir.mkdir(exist_ok=True) | ||
|
||
# create an io object | ||
io = ModuleIO() | ||
filename = Path(clustrmsd_dir, "io.json") | ||
io.load(filename) | ||
models = io.retrieve_models() | ||
|
||
# processing the clusters | ||
unq_clusters = np.unique(cluster_arr) # contains -1 (unclustered) | ||
clusters = [c for c in unq_clusters if c != -1] | ||
log.info(f"clusters = {clusters}") | ||
|
||
clt_dic, cluster_centers = write_clusters(clusters, cluster_arr, models, out_filename=Path(outdir, "cluster.out"), rmsd_matrix = None, centers=False) | ||
|
||
sorted_score_dic = rank_clusters(clt_dic, clustrmsd_params["threshold"]) | ||
|
||
# add this to the models | ||
output_models = [] | ||
for cluster_rank, _e in enumerate(sorted_score_dic, start=1): | ||
cluster_id, _ = _e | ||
# sort the models by score | ||
clt_dic[cluster_id].sort() | ||
# rank the models | ||
for model_ranking, pdb in enumerate(clt_dic[cluster_id], | ||
start=1): | ||
pdb.clt_id = int(cluster_id) | ||
pdb.clt_rank = cluster_rank | ||
pdb.clt_model_rank = model_ranking | ||
output_models.append(pdb) | ||
|
||
write_structure_list(models, | ||
output_models, | ||
out_fname=Path(outdir,"clustrmsd.tsv")) | ||
# save the io.json file | ||
io.save(outdir) | ||
|
||
return outdir | ||
|
||
|
||
|
Oops, something went wrong.