-
Notifications
You must be signed in to change notification settings - Fork 1k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Properly handle Params4bit in set_module_tensor_to_device #2934
Conversation
The docs for this PR live here. All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thanks for adding this @matthewdouglas !
if old_value.shape != value.shape and param_cls.__name__ != "Params4bit": | ||
raise ValueError( | ||
f'Trying to set a tensor of shape {value.shape} in "{tensor_name}" (which has shape {old_value.shape}), this look incorrect.' | ||
f'Trying to set a tensor of shape {value.shape} in "{tensor_name}" (which has shape {old_value.shape}), this looks incorrect.' | ||
) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
If I understood correctly here, the shape of the Param4bit is different from the actual weight that we are trying to set in the offload case. That happens because in with offload, the weight is not quantized.
Could you add a short comment to explain what happens here ?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Yes, that's correct! The shape is changed and weights are packed (e.g. two nf4/fp4 values in uint8) with Params4bit. I will add a comment to explain that.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
@SunMarc cc @muellerzr @Titus-von-Koeller
I've added a comment to explain. Here's a small repro example for the shape mismatch.
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
MODEL_ID = "facebook/opt-1.3b"
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
llm_int8_enable_fp32_cpu_offload=True,
)
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
quantization_config=quantization_config,
device_map="auto",
max_memory={0: "0.5GiB", "cpu": "8GiB"},
low_cpu_mem_usage=True,
torch_dtype=torch.float16,
)
print(model, model.hf_device_map)
inputs = tokenizer("What is the meaning of life, the universe, and everything?", return_tensors="pt").to("cuda")
output = model.generate(**inputs, max_new_tokens=16, num_return_sequences=1)
print(f"{tokenizer.decode(output[0])}")
Output:
Some parameters are on the meta device device because they were offloaded to the cpu.
OPTForCausalLM(
(model): OPTModel(
(decoder): OPTDecoder(
(embed_tokens): Embedding(50272, 2048, padding_idx=1)
(embed_positions): OPTLearnedPositionalEmbedding(2050, 2048)
(final_layer_norm): LayerNorm((2048,), eps=1e-05, elementwise_affine=True)
(layers): ModuleList(
(0-23): 24 x OPTDecoderLayer(
(self_attn): OPTAttention(
(k_proj): Linear4bit(in_features=2048, out_features=2048, bias=True)
(v_proj): Linear4bit(in_features=2048, out_features=2048, bias=True)
(q_proj): Linear4bit(in_features=2048, out_features=2048, bias=True)
(out_proj): Linear4bit(in_features=2048, out_features=2048, bias=True)
)
(activation_fn): ReLU()
(self_attn_layer_norm): LayerNorm((2048,), eps=1e-05, elementwise_affine=True)
(fc1): Linear4bit(in_features=2048, out_features=8192, bias=True)
(fc2): Linear4bit(in_features=8192, out_features=2048, bias=True)
(final_layer_norm): LayerNorm((2048,), eps=1e-05, elementwise_affine=True)
)
)
)
)
(lm_head): Linear(in_features=2048, out_features=50272, bias=False)
) {'model.decoder.embed_tokens': 0, 'lm_head': 0, 'model.decoder.embed_positions': 0, 'model.decoder.final_layer_norm': 0, 'model.decoder.layers.0': 0, 'model.decoder.layers.1': 0, 'model.decoder.layers.2': 0, 'model.decoder.layers.3': 0, 'model.decoder.layers.4': 0, 'model.decoder.layers.5': 0, 'model.decoder.layers.6': 0, 'model.decoder.layers.7': 0, 'model.decoder.layers.8': 0, 'model.decoder.layers.9': 'cpu', 'model.decoder.layers.10': 'cpu', 'model.decoder.layers.11': 'cpu', 'model.decoder.layers.12': 'cpu', 'model.decoder.layers.13': 'cpu', 'model.decoder.layers.14': 'cpu', 'model.decoder.layers.15': 'cpu', 'model.decoder.layers.16': 'cpu', 'model.decoder.layers.17': 'cpu', 'model.decoder.layers.18': 'cpu', 'model.decoder.layers.19': 'cpu', 'model.decoder.layers.20': 'cpu', 'model.decoder.layers.21': 'cpu', 'model.decoder.layers.22': 'cpu', 'model.decoder.layers.23': 'cpu'}
Traceback (most recent call last):
File "/home/matt/code/accelerate/./sandbox/inference.py", line 35, in <module>
output = model.generate(**inputs, max_new_tokens=16, num_return_sequences=1)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/matt/code/accelerate/.venv/lib/python3.12/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
return func(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^
File "/home/matt/code/accelerate/.venv/lib/python3.12/site-packages/transformers/generation/utils.py", line 1914, in generate
result = self._sample(
^^^^^^^^^^^^^
File "/home/matt/code/accelerate/.venv/lib/python3.12/site-packages/transformers/generation/utils.py", line 2651, in _sample
outputs = self(
^^^^^
File "/home/matt/code/accelerate/.venv/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/matt/code/accelerate/.venv/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/matt/code/accelerate/src/accelerate/hooks.py", line 169, in new_forward
output = module._old_forward(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/matt/code/accelerate/.venv/lib/python3.12/site-packages/transformers/models/opt/modeling_opt.py", line 1118, in forward
outputs = self.model.decoder(
^^^^^^^^^^^^^^^^^^^
File "/home/matt/code/accelerate/.venv/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/matt/code/accelerate/.venv/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/matt/code/accelerate/.venv/lib/python3.12/site-packages/transformers/models/opt/modeling_opt.py", line 884, in forward
layer_outputs = decoder_layer(
^^^^^^^^^^^^^^
File "/home/matt/code/accelerate/.venv/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/matt/code/accelerate/.venv/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/matt/code/accelerate/src/accelerate/hooks.py", line 169, in new_forward
output = module._old_forward(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/matt/code/accelerate/.venv/lib/python3.12/site-packages/transformers/models/opt/modeling_opt.py", line 525, in forward
hidden_states, self_attn_weights, present_key_value = self.self_attn(
^^^^^^^^^^^^^^^
File "/home/matt/code/accelerate/.venv/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/matt/code/accelerate/.venv/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/matt/code/accelerate/src/accelerate/hooks.py", line 169, in new_forward
output = module._old_forward(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/matt/code/accelerate/.venv/lib/python3.12/site-packages/transformers/models/opt/modeling_opt.py", line 155, in forward
query_states = self.q_proj(hidden_states) * self.scaling
^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/matt/code/accelerate/.venv/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/matt/code/accelerate/.venv/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/matt/code/accelerate/src/accelerate/hooks.py", line 164, in new_forward
args, kwargs = module._hf_hook.pre_forward(module, *args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/matt/code/accelerate/src/accelerate/hooks.py", line 354, in pre_forward
set_module_tensor_to_device(
File "/home/matt/code/accelerate/src/accelerate/utils/modeling.py", line 366, in set_module_tensor_to_device
raise ValueError(
ValueError: Trying to set a tensor of shape torch.Size([2048, 2048]) in "weight" (which has shape torch.Size([2097152, 1])), this look incorrect.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Nice ! In a follow PR in transformers, I think we can finally remove the need for llm_int8_enable_fp32_cpu_offload
in the 4bit case. In the 8bit case, this will still be required since we would still need to not convert the offloaded layers.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thanks! LG2M as long as Marc's logic is indeed why this is a thing, and a comment explaining that would be necessary.
…_tensor_to_device
What does this PR do?
This PR fixes compatibility for bitsandbytes
Params4bit
andset_module_tensor_to_device
.Related: bitsandbytes-foundation/bitsandbytes#1279
Before submitting
Pull Request section?
to it if that's the case.
documentation guidelines, and
here are tips on formatting docstrings.
Who can review?
Anyone in the community is free to review the PR once the tests have passed. Feel free to tag
members/contributors who may be interested in your PR.
@muellerzr @SunMarc