Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update polars to fix PanicException #2585

Merged
merged 13 commits into from
Mar 14, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
59 changes: 47 additions & 12 deletions services/worker/poetry.lock

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

2 changes: 1 addition & 1 deletion services/worker/pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@ transformers = "^4.36.0"
typer = "^0.4.2"
uvicorn = "^0.20.0"
wget = "^3.2"
polars = "^0.19.15"
polars = ">=0.20.0"

[tool.poetry.group.dev.dependencies]
bandit = "^1.7.4"
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -193,7 +193,7 @@ def compute_histogram(
hist_df_reverted = df.with_columns(pl.col(column_name).mul(-1).alias("reverse"))["reverse"].hist(
bins=bins_edges_reverted
)
hist_reverted = hist_df_reverted["reverse_count"].cast(int).to_list()
hist_reverted = hist_df_reverted["count"].cast(int).to_list()
severo marked this conversation as resolved.
Show resolved Hide resolved
hist = hist_reverted[::-1]
hist = [hist[0] + hist[1]] + hist[2:-2] + [hist[-2] + hist[-1]]
else:
Expand All @@ -219,9 +219,7 @@ def compute_histogram(
)


def min_max_median_std_nan_count_proportion(
data: pl.DataFrame, column_name: str, n_samples: int
) -> tuple[float, float, float, float, float, int, float]:
def min_max_mean_median_std(data: pl.DataFrame, column_name: str) -> tuple[float, float, float, float, float]:
"""
Compute minimum, maximum, median, standard deviation, number of nan samples and their proportion in column data.
"""
Expand All @@ -231,7 +229,6 @@ def min_max_median_std_nan_count_proportion(
mean=pl.all().mean(),
median=pl.all().median(),
std=pl.all().std(),
nan_count=pl.all().null_count(),
)
stats_names = pl.Series(col_stats.keys())
stats_expressions = [pl.struct(stat) for stat in col_stats.values()]
Expand All @@ -240,26 +237,19 @@ def min_max_median_std_nan_count_proportion(
.select(name=stats_names, stats=pl.concat_list(stats_expressions).flatten())
.unnest("stats")
)
minimum, maximum, mean, median, std, nan_count = stats[column_name].to_list()
minimum, maximum, mean, median, std = stats[column_name].to_list()
if any(statistic is None for statistic in [minimum, maximum, mean, median, std]):
# this should be possible only if all values are none
if not all(statistic is None for statistic in [minimum, maximum, mean, median, std]):
raise StatisticsComputationError(
f"Unexpected result for {column_name=}: "
f"Some measures among {minimum=}, {maximum=}, {mean=}, {median=}, {std=} are None but not all of them. "
)
if nan_count != n_samples:
raise StatisticsComputationError(
f"Unexpected result for {column_name=}: "
f"{minimum=}, {maximum=}, {mean=}, {median=}, {std=} are None but not all values in column are None. "
)
return minimum, maximum, mean, median, std, nan_count, 1.0
return minimum, maximum, mean, median, std

minimum, maximum, mean, median, std = np.round([minimum, maximum, mean, median, std], DECIMALS).tolist()
nan_proportion = np.round(nan_count / n_samples, DECIMALS).item() if nan_count else 0.0
nan_count = int(nan_count)

return minimum, maximum, mean, median, std, nan_count, nan_proportion
return minimum, maximum, mean, median, std


def value_counts(data: pl.DataFrame, column_name: str) -> dict[Any, Any]:
Expand Down Expand Up @@ -385,10 +375,7 @@ def _compute_statistics(
data: pl.DataFrame, column_name: str, n_samples: int, n_bins: int
) -> NumericalStatisticsItem:
logging.info(f"Compute statistics for float column {column_name} with polars. ")
minimum, maximum, mean, median, std, nan_count, nan_proportion = min_max_median_std_nan_count_proportion(
data, column_name, n_samples
)
logging.debug(f"{minimum=}, {maximum=}, {mean=}, {median=}, {std=}, {nan_count=} {nan_proportion=}")
nan_count, nan_proportion = nan_count_proportion(data, column_name, n_samples)
if nan_count == n_samples: # all values are None
return NumericalStatisticsItem(
nan_count=n_samples,
Expand All @@ -400,6 +387,8 @@ def _compute_statistics(
std=None,
histogram=None,
)
minimum, maximum, mean, median, std = min_max_mean_median_std(data, column_name)
logging.debug(f"{minimum=}, {maximum=}, {mean=}, {median=}, {std=}, {nan_count=} {nan_proportion=}")

hist = compute_histogram(
data,
Expand Down Expand Up @@ -442,11 +431,8 @@ def _compute_statistics(
data: pl.DataFrame, column_name: str, n_samples: int, n_bins: int
) -> NumericalStatisticsItem:
logging.info(f"Compute statistics for integer column {column_name} with polars. ")
minimum, maximum, mean, median, std, nan_count, nan_proportion = min_max_median_std_nan_count_proportion(
data, column_name, n_samples
)
logging.debug(f"{minimum=}, {maximum=}, {mean=}, {median=}, {std=}, {nan_count=} {nan_proportion=}")
if nan_count == n_samples: # all values are None
nan_count, nan_proportion = nan_count_proportion(data, column_name, n_samples=n_samples)
if nan_count == n_samples:
return NumericalStatisticsItem(
nan_count=n_samples,
nan_proportion=1.0,
Expand All @@ -458,6 +444,9 @@ def _compute_statistics(
histogram=None,
)

minimum, maximum, mean, median, std = min_max_mean_median_std(data, column_name)
logging.debug(f"{minimum=}, {maximum=}, {mean=}, {median=}, {std=}, {nan_count=} {nan_proportion=}")

minimum, maximum = int(minimum), int(maximum)
hist = compute_histogram(
data,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@
import polars as pl
import pytest
from datasets import ClassLabel, Dataset
from huggingface_hub.hf_api import HfApi
from libcommon.dtos import Priority
from libcommon.exceptions import StatisticsComputationError
from libcommon.resources import CacheMongoResource, QueueMongoResource
Expand Down Expand Up @@ -38,6 +39,7 @@
)
from worker.resources import LibrariesResource

from ...constants import CI_HUB_ENDPOINT, CI_USER_TOKEN
from ...fixtures.hub import HubDatasetTest
from ..utils import REVISION_NAME

Expand Down Expand Up @@ -662,6 +664,38 @@ def test_list_statistics(
assert computed == expected


@pytest.fixture
def struct_thread_panic_error_parquet_file(tmp_path_factory: pytest.TempPathFactory) -> str:
repo_id = "__DUMMY_TRANSFORMERS_USER__/test_polars_panic_error"
hf_api = HfApi(endpoint=CI_HUB_ENDPOINT)

dir_name = tmp_path_factory.mktemp("data")
hf_api.hf_hub_download(
repo_id=repo_id,
filename="test_polars_panic_error.parquet",
repo_type="dataset",
local_dir=dir_name,
token=CI_USER_TOKEN,
)
return str(dir_name / "test_polars_panic_error.parquet")


def test_polars_struct_thread_panic_error(struct_thread_panic_error_parquet_file: str) -> None:
from polars import (
Float64,
List,
String,
Struct,
)

df = pl.read_parquet(struct_thread_panic_error_parquet_file) # should not raise
assert "conversations" in df

conversations_schema = List(Struct({"from": String, "value": String, "weight": Float64}))
assert "conversations" in df.schema
assert df.schema["conversations"] == conversations_schema


@pytest.mark.parametrize(
"hub_dataset_name,expected_error_code",
[
Expand Down