🤗 Megrez-3B-Instruct | 🤗 Megrez-3B-Omni | 📖 WeChat Official | 💬 WeChat Groups
HuggingFace | ModelScope | Modelers | Wisemodel |
---|---|---|---|
Megrez-3B-Instruct-Omni | Megrez-3B-Instruct-Omni | Megrez-3B-Instruct-Omni | Megrez-3B-Instruct-Omni |
Megrez-3B-Instruct | Megrez-3B-Instruct | Megrez-3B-Instruct | Megrez-3B-Instruct |
Megrez-3B-Omni是由无问芯穹(Infinigence AI)研发的端侧全模态理解模型,基于无问大语言模型Megrez-3B-Instruct扩展,同时具备图片、文本、音频三种模态数据的理解分析能力,在三个方面均取得最优精度
- 在图像理解方面,基于SigLip-400M构建图像Token,在OpenCompass榜单上(综合8个主流多模态评测基准)平均得分66.2,超越LLaVA-NeXT-Yi-34B等更大参数规模的模型。Megrez-3B-Omni也是在MME、MMMU、OCRBench等测试集上目前精度最高的图像理解模型之一,在场景理解、OCR等方面具有良好表现。
- 在语言理解方面,Megrez-3B-Omni并未牺牲模型的文本处理能力,综合能力较单模态版本(Megrez-3B-Instruct)精度变化小于2%,保持在C-EVAL、MMLU (Pro)、AlignBench等多个测试集上的最优精度优势,依然取得超越上一代14B模型的能力表现
- 在语音理解方面,采用Qwen2-Audio/whisper-large-v3的Encoder作为语音输入,支持中英文语音输入及多轮对话,支持对输入图片的语音提问,根据语音指令直接响应文本,在多项基准任务上取得了领先的结果
- 上图为Megrez-3B-Omni与其他开源模型在图片理解各任务的能力比较;
- 下图为Megrez-3B-Omni在opencompass测试集上表现,参考 InternVL 2.5 Blog Post
更多指标数据请见 🤗 Megrez-3B-Omni
image_tokens | prefill (tokens/s) | decode (tokens/s) | |
---|---|---|---|
Megrez-3B-Omni | 448 | 6312.66 | 1294.9 |
Qwen2-VL-2B | 1378 | 7349.39 | 685.66 |
MiniCPM-V-2_6 | 448 | 2167.09 | 452.51 |
实验设置:
- 测试环境:NVIDIA H100,vLLM下输入128个Text token和一张1480x720大小图片,输出128个token,num_seqs固定为8
- Qwen2-VL-2B虽然其具备更小尺寸的基座模型,但编码上述大小图片后的image_token相较Megrez-3B-Omni多很多,导致此实验下的decode速度小于Megrez-3B-Omni
环境安装和vLLM推理代码等部署问题请参考 Infini-Megrez-Omni
如下是一个使用transformers进行推理的例子,通过在content字段中分别传入text、image和audio,可以图文/图音等多种模态和模型进行交互。
import torch
from transformers import AutoModelForCausalLM
path = "{{PATH_TO_PRETRAINED_MODEL}}" # Change this to the path of the model.
model = (
AutoModelForCausalLM.from_pretrained(
path,
trust_remote_code=True,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
)
.eval()
.cuda()
)
# Chat with text and image
messages = [
{
"role": "user",
"content": {
"text": "Please describe the content of the image.",
"image": "./data/sample_image.jpg",
},
},
]
# Chat with audio and image
messages = [
{
"role": "user",
"content": {
"image": "./data/sample_image.jpg",
"audio": "./data/sample_audio.m4a",
},
},
]
MAX_NEW_TOKENS = 100
response = model.chat(
messages,
sampling=False,
max_new_tokens=MAX_NEW_TOKENS,
temperature=0,
)
print(response)
- 请将图片尽量在首轮输入以保证推理效果,语音和文本无此限制,可以自由切换
- 语音识别(ASR)场景下,只需要将content['text']修改为“将语音转化为文字。”
- OCR场景下开启采样可能会引入语言模型幻觉导致的文字变化,可考虑关闭采样进行推理(sampling=False),但关闭采样可能引入模型复读
Megrez-3B-Instruct是由无问芯穹(Infinigence AI)完全自主训练的大语言模型。Megrez-3B旨在通过软硬协同理念,打造一款极速推理、小巧精悍、极易上手的端侧智能解决方案。Megrez-3B具有以下优点:
- 高精度:Megrez-3B虽然参数规模只有3B,但通过提升数据质量,成功弥合模型能力代差,将上一代14B模型的能力成功压缩进3B大小的模型,在主流榜单上取得了优秀的性能表现。
- 高速度:模型小≠速度快。Megrez-3B通过软硬协同优化,确保了各结构参数与主流硬件高度适配,推理速度领先同精度模型最大300%。
- 简单易用:模型设计之初我们进行了激烈的讨论:应该在结构设计上留出更多软硬协同的空间(如ReLU、稀疏化、更精简的结构等),还是使用经典结构便于开发者直接用起来?我们选择了后者,即采用最原始的LLaMA结构,开发者无需任何修改便可将模型部署于各种平台,最小化二次开发复杂度。
- 丰富应用:我们提供了完整的WebSearch方案。我们对模型进行了针对性训练,使模型可以自动决策搜索调用时机,在搜索和对话中自动切换,并提供更好的总结效果。我们提供了完整的部署工程代码 github,用户可以基于该功能构建属于自己的Kimi或Perplexity,克服小模型常见的幻觉问题和知识储备不足的局限。
速度精度模型大小散点图如下,位置越靠近右上表明模型越好越快。更多指标数据请见 🤗 Megrez-3B-Instruct
具体模型能力结果和部署代码参考 Infini-Megrez
我们模型进行了针对性训练,并提供了完整的工程部署方案。InfiniWebSearch 具有以下优势:
- 自动决定调用时机:自动决策搜索调用时机,在搜索和对话中自动切换,避免一直调用或一直不调用
- 上下文理解:根据多轮对话生成合理的搜索query或处理搜索结果,更好的理解用户意图
- 带参考信息的结构化输出:每个结论注明出处,便于查验
- 一个模型两种用法:通过sys prompt区分WebSearch功能开启与否,兼顾LLM的高精度与WebSearch的用户体验,两种能力不乱窜
我们对模型进行了针对性训练,使模型可以自动决策搜索调用时机,在搜索和对话中自动切换,并提供更好的总结效果。我们提供了完整的部署工程代码 ,用户可以基于该功能构建属于自己的Kimi或Perplexity,克服小模型常见的幻觉问题和知识储备不足的局限。
- 协议:本仓库中代码依照 Apache-2.0 协议开源。
- 幻觉:大模型天然存在幻觉问题,用户使用过程中请勿完全相信模型生成的内容。
- 价值观及安全性:本模型已尽全力确保训练过程中使用的数据的合规性,但由于数据的大体量及复杂性,仍有可能存在一些无法预见的问题。如果出现使用本开源模型而导致的任何问题,包括但不限于数据安全问题、公共舆论风险,或模型被误导、滥用、传播或不当利用所带来的任何风险和问题,我们将不承担任何责任。