-
Notifications
You must be signed in to change notification settings - Fork 22
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Porting Numba-based packing from INC (#301)
Signed-off-by: yiliu30 <[email protected]>
- Loading branch information
Showing
5 changed files
with
600 additions
and
22 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,279 @@ | ||
# Copyright (c) 2024 Intel Corporation | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
"""Utility functions for bit packing.""" | ||
|
||
|
||
from typing import Callable, Dict, Tuple | ||
|
||
import numba | ||
import numpy as np | ||
|
||
# key: (bits, compress_bits), value: pack function | ||
bit_packers: Dict[Tuple[int, int], Callable] = {} | ||
|
||
|
||
def register_pack_func(orig_bits: int, compress_bits: int): | ||
"""Register the pack function.""" | ||
|
||
def decorator(func): | ||
bit_packers[(orig_bits, compress_bits)] = func | ||
return func | ||
|
||
return decorator | ||
|
||
|
||
@register_pack_func(4, 32) | ||
@numba.jit(nopython=True, parallel=True) | ||
def pack_array_with_numba_b4_c32( | ||
raw_array: np.ndarray, packed_array: np.ndarray, n_pack: int, new_in_features: int | ||
) -> np.ndarray: | ||
"""Pack the array with numba when bits=4 and compress_bits=32.""" | ||
for i in range(new_in_features): | ||
packed_array[:, i] = ( | ||
((raw_array[:, i * n_pack + 7] & 0b1111) << 28) | ||
| ((raw_array[:, i * n_pack + 6] & 0b1111) << 24) | ||
| ((raw_array[:, i * n_pack + 5] & 0b1111) << 20) | ||
| ((raw_array[:, i * n_pack + 4] & 0b1111) << 16) | ||
| ((raw_array[:, i * n_pack + 3] & 0b1111) << 12) | ||
| ((raw_array[:, i * n_pack + 2] & 0b1111) << 8) | ||
| ((raw_array[:, i * n_pack + 1] & 0b1111) << 4) | ||
| (raw_array[:, i * n_pack] & 0b1111) | ||
) | ||
return packed_array | ||
|
||
|
||
@register_pack_func(4, 16) | ||
@numba.jit(nopython=True, parallel=True) | ||
def pack_array_with_numba_b4_c16( | ||
raw_array: np.ndarray, packed_array: np.ndarray, n_pack: int, new_in_features: int | ||
) -> np.ndarray: | ||
"""Pack the array with numba when bits=4 and compress_bits=16.""" | ||
for i in range(new_in_features): | ||
packed_array[:, i] = ( | ||
((raw_array[:, i * n_pack + 3] & 0b1111) << 12) | ||
| ((raw_array[:, i * n_pack + 2] & 0b1111) << 8) | ||
| ((raw_array[:, i * n_pack + 1] & 0b1111) << 4) | ||
| (raw_array[:, i * n_pack] & 0b1111) | ||
) | ||
return packed_array | ||
|
||
|
||
@register_pack_func(4, 8) | ||
@numba.jit(nopython=True, parallel=True) | ||
def pack_array_with_numba_b4_c8( | ||
raw_array: np.ndarray, packed_array: np.ndarray, n_pack: int, new_in_features: int | ||
) -> np.ndarray: | ||
"""Pack the array with numba when bits=4 and compress_bits=8.""" | ||
for i in range(new_in_features): | ||
packed_array[:, i] = ((raw_array[:, i * n_pack + 1] & 0b1111) << 4) | (raw_array[:, i * n_pack] & 0b1111) | ||
return packed_array | ||
|
||
|
||
@register_pack_func(4, 64) | ||
@numba.jit(nopython=True, parallel=True) | ||
def pack_array_with_numba_b4_c64( | ||
raw_array: np.ndarray, packed_array: np.ndarray, n_pack: int, new_in_features: int | ||
) -> np.ndarray: | ||
"""Pack the array with numba when bits=4 and compress_bits=64.""" | ||
for i in range(new_in_features): | ||
packed_array[:, i] = ( | ||
((raw_array[:, i * n_pack + 15] & 0b1111) << 60) | ||
| ((raw_array[:, i * n_pack + 14] & 0b1111) << 56) | ||
| ((raw_array[:, i * n_pack + 13] & 0b1111) << 52) | ||
| ((raw_array[:, i * n_pack + 12] & 0b1111) << 48) | ||
| ((raw_array[:, i * n_pack + 11] & 0b1111) << 44) | ||
| ((raw_array[:, i * n_pack + 10] & 0b1111) << 40) | ||
| ((raw_array[:, i * n_pack + 9] & 0b1111) << 36) | ||
| ((raw_array[:, i * n_pack + 8] & 0b1111) << 32) | ||
| ((raw_array[:, i * n_pack + 7] & 0b1111) << 28) | ||
| ((raw_array[:, i * n_pack + 6] & 0b1111) << 24) | ||
| ((raw_array[:, i * n_pack + 5] & 0b1111) << 20) | ||
| ((raw_array[:, i * n_pack + 4] & 0b1111) << 16) | ||
| ((raw_array[:, i * n_pack + 3] & 0b1111) << 12) | ||
| ((raw_array[:, i * n_pack + 2] & 0b1111) << 8) | ||
| ((raw_array[:, i * n_pack + 1] & 0b1111) << 4) | ||
| (raw_array[:, i * n_pack] & 0b1111) | ||
) | ||
return packed_array | ||
|
||
|
||
@register_pack_func(8, 32) | ||
@numba.jit(nopython=True, parallel=True) | ||
def pack_array_with_numba_b8_c32( | ||
raw_array: np.ndarray, packed_array: np.ndarray, n_pack: int, new_in_features: int | ||
) -> np.ndarray: | ||
"""Pack the array with numba when bits=8 and compress_bits=32.""" | ||
for i in range(new_in_features): | ||
packed_array[:, i] = ( | ||
((raw_array[:, i * n_pack + 3] & 0b11111111) << 24) | ||
| ((raw_array[:, i * n_pack + 2] & 0b11111111) << 16) | ||
| ((raw_array[:, i * n_pack + 1] & 0b11111111) << 8) | ||
| (raw_array[:, i * n_pack] & 0b11111111) | ||
) | ||
return packed_array | ||
|
||
|
||
@register_pack_func(8, 16) | ||
@numba.jit(nopython=True, parallel=True) | ||
def pack_array_with_numba_b8_c16( | ||
raw_array: np.ndarray, packed_array: np.ndarray, n_pack: int, new_in_features: int | ||
) -> np.ndarray: | ||
"""Pack the array with numba when bits=8 and compress_bits=16.""" | ||
for i in range(new_in_features): | ||
packed_array[:, i] = ( | ||
((raw_array[:, i * n_pack + 3] & 0b11111111) << 24) | ||
| ((raw_array[:, i * n_pack + 2] & 0b11111111) << 16) | ||
| ((raw_array[:, i * n_pack + 1] & 0b11111111) << 8) | ||
| (raw_array[:, i * n_pack] & 0b11111111) | ||
) | ||
return packed_array | ||
|
||
|
||
@register_pack_func(8, 8) | ||
@numba.jit(nopython=True, parallel=True) | ||
def pack_array_with_numba_b8_c8( | ||
raw_array: np.ndarray, packed_array: np.ndarray, n_pack: int, new_in_features: int | ||
) -> np.ndarray: | ||
"""Pack the array with numba when bits=8 and compress_bits=8.""" | ||
for i in range(new_in_features): | ||
packed_array[:, i] = raw_array[:, i * n_pack] & 0b11111111 | ||
return packed_array | ||
|
||
|
||
@register_pack_func(8, 64) | ||
@numba.jit(nopython=True, parallel=True) | ||
def pack_array_with_numba_b8_c64( | ||
raw_array: np.ndarray, packed_array: np.ndarray, n_pack: int, new_in_features: int | ||
) -> np.ndarray: | ||
"""Pack the array with numba when bits=8 and compress_bits=64.""" | ||
for i in range(new_in_features): | ||
packed_array[:, i] = ( | ||
((raw_array[:, i * n_pack + 7] & 0b11111111) << 56) | ||
| ((raw_array[:, i * n_pack + 6] & 0b11111111) << 48) | ||
| ((raw_array[:, i * n_pack + 5] & 0b11111111) << 40) | ||
| ((raw_array[:, i * n_pack + 4] & 0b11111111) << 32) | ||
| ((raw_array[:, i * n_pack + 3] & 0b11111111) << 24) | ||
| ((raw_array[:, i * n_pack + 2] & 0b11111111) << 16) | ||
| ((raw_array[:, i * n_pack + 1] & 0b11111111) << 8) | ||
| (raw_array[:, i * n_pack] & 0b11111111) | ||
) | ||
return packed_array | ||
|
||
|
||
@register_pack_func(2, 32) | ||
@numba.jit(nopython=True, parallel=True) | ||
def pack_array_with_numba_b2_c32( | ||
raw_array: np.ndarray, packed_array: np.ndarray, n_pack: int, new_in_features: int | ||
) -> np.ndarray: | ||
"""Pack the array with numba when bits=2 and compress_bits=32.""" | ||
for i in range(new_in_features): | ||
packed_array[:, i] = ( | ||
((raw_array[:, i * n_pack + 15] & 0b11) << 30) | ||
| ((raw_array[:, i * n_pack + 14] & 0b11) << 28) | ||
| ((raw_array[:, i * n_pack + 13] & 0b11) << 26) | ||
| ((raw_array[:, i * n_pack + 12] & 0b11) << 24) | ||
| ((raw_array[:, i * n_pack + 11] & 0b11) << 22) | ||
| ((raw_array[:, i * n_pack + 10] & 0b11) << 20) | ||
| ((raw_array[:, i * n_pack + 9] & 0b11) << 18) | ||
| ((raw_array[:, i * n_pack + 8] & 0b11) << 16) | ||
| ((raw_array[:, i * n_pack + 7] & 0b11) << 14) | ||
| ((raw_array[:, i * n_pack + 6] & 0b11) << 12) | ||
| ((raw_array[:, i * n_pack + 5] & 0b11) << 10) | ||
| ((raw_array[:, i * n_pack + 4] & 0b11) << 8) | ||
| ((raw_array[:, i * n_pack + 3] & 0b11) << 6) | ||
| ((raw_array[:, i * n_pack + 2] & 0b11) << 4) | ||
| ((raw_array[:, i * n_pack + 1] & 0b11) << 2) | ||
| (raw_array[:, i * n_pack] & 0b11) | ||
) | ||
return packed_array | ||
|
||
|
||
@register_pack_func(2, 16) | ||
@numba.jit(nopython=True, parallel=True) | ||
def pack_array_with_numba_b2_c16( | ||
raw_array: np.ndarray, packed_array: np.ndarray, n_pack: int, new_in_features: int | ||
) -> np.ndarray: | ||
"""Pack the array with numba when bits=2 and compress_bits=16.""" | ||
for i in range(new_in_features): | ||
packed_array[:, i] = ( | ||
((raw_array[:, i * n_pack + 7] & 0b11) << 14) | ||
| ((raw_array[:, i * n_pack + 6] & 0b11) << 12) | ||
| ((raw_array[:, i * n_pack + 5] & 0b11) << 10) | ||
| ((raw_array[:, i * n_pack + 4] & 0b11) << 8) | ||
| ((raw_array[:, i * n_pack + 3] & 0b11) << 6) | ||
| ((raw_array[:, i * n_pack + 2] & 0b11) << 4) | ||
| ((raw_array[:, i * n_pack + 1] & 0b11) << 2) | ||
| (raw_array[:, i * n_pack] & 0b11) | ||
) | ||
return packed_array | ||
|
||
|
||
@register_pack_func(2, 8) | ||
@numba.jit(nopython=True, parallel=True) | ||
def pack_array_with_numba_b2_c8( | ||
raw_array: np.ndarray, packed_array: np.ndarray, n_pack: int, new_in_features: int | ||
) -> np.ndarray: | ||
"""Pack the array with numba when bits=2 and compress_bits=8.""" | ||
for i in range(new_in_features): | ||
packed_array[:, i] = ( | ||
((raw_array[:, i * n_pack + 3] & 0b11) << 6) | ||
| ((raw_array[:, i * n_pack + 2] & 0b11) << 4) | ||
| ((raw_array[:, i * n_pack + 1] & 0b11) << 2) | ||
| (raw_array[:, i * n_pack] & 0b11) | ||
) | ||
return packed_array | ||
|
||
|
||
@register_pack_func(2, 64) | ||
@numba.jit(nopython=True, parallel=True) | ||
def pack_array_with_numba_b2_c64( | ||
raw_array: np.ndarray, packed_array: np.ndarray, n_pack: int, new_in_features: int | ||
) -> np.ndarray: | ||
"""Pack the array with numba when bits=2 and compress_bits=64.""" | ||
for i in range(new_in_features): | ||
packed_array[:, i] = ( | ||
((raw_array[:, i * n_pack + 31] & 0b11) << 62) | ||
| ((raw_array[:, i * n_pack + 30] & 0b11) << 60) | ||
| ((raw_array[:, i * n_pack + 29] & 0b11) << 58) | ||
| ((raw_array[:, i * n_pack + 28] & 0b11) << 56) | ||
| ((raw_array[:, i * n_pack + 27] & 0b11) << 54) | ||
| ((raw_array[:, i * n_pack + 26] & 0b11) << 52) | ||
| ((raw_array[:, i * n_pack + 25] & 0b11) << 50) | ||
| ((raw_array[:, i * n_pack + 24] & 0b11) << 48) | ||
| ((raw_array[:, i * n_pack + 23] & 0b11) << 46) | ||
| ((raw_array[:, i * n_pack + 22] & 0b11) << 44) | ||
| ((raw_array[:, i * n_pack + 21] & 0b11) << 42) | ||
| ((raw_array[:, i * n_pack + 20] & 0b11) << 40) | ||
| ((raw_array[:, i * n_pack + 19] & 0b11) << 38) | ||
| ((raw_array[:, i * n_pack + 18] & 0b11) << 36) | ||
| ((raw_array[:, i * n_pack + 17] & 0b11) << 34) | ||
| ((raw_array[:, i * n_pack + 16] & 0b11) << 32) | ||
| ((raw_array[:, i * n_pack + 15] & 0b11) << 30) | ||
| ((raw_array[:, i * n_pack + 14] & 0b11) << 28) | ||
| ((raw_array[:, i * n_pack + 13] & 0b11) << 26) | ||
| ((raw_array[:, i * n_pack + 12] & 0b11) << 24) | ||
| ((raw_array[:, i * n_pack + 11] & 0b11) << 22) | ||
| ((raw_array[:, i * n_pack + 10] & 0b11) << 20) | ||
| ((raw_array[:, i * n_pack + 9] & 0b11) << 18) | ||
| ((raw_array[:, i * n_pack + 8] & 0b11) << 16) | ||
| ((raw_array[:, i * n_pack + 7] & 0b11) << 14) | ||
| ((raw_array[:, i * n_pack + 6] & 0b11) << 12) | ||
| ((raw_array[:, i * n_pack + 5] & 0b11) << 10) | ||
| ((raw_array[:, i * n_pack + 4] & 0b11) << 8) | ||
| ((raw_array[:, i * n_pack + 3] & 0b11) << 6) | ||
| ((raw_array[:, i * n_pack + 2] & 0b11) << 4) | ||
| ((raw_array[:, i * n_pack + 1] & 0b11) << 2) | ||
| (raw_array[:, i * n_pack] & 0b11) | ||
) | ||
return packed_array |
Oops, something went wrong.