Skip to content

Commit

Permalink
Update documentation
Browse files Browse the repository at this point in the history
  • Loading branch information
ajnebro committed Jun 24, 2024
1 parent 343cc21 commit 2dc65a4
Show file tree
Hide file tree
Showing 49 changed files with 295 additions and 177 deletions.
46 changes: 26 additions & 20 deletions docs/_sources/api/algorithm/multiobjective/eas/hype.ipynb.txt

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,8 @@
"outputs": [],
"source": [
"from jmetal.algorithm.multiobjective.ibea import IBEA\n",
"from jmetal.operator import SBXCrossover, PolynomialMutation\n",
"from jmetal.operator.crossover import SBXCrossover\n",
"from jmetal.operator.mutation import PolynomialMutation\n",
"from jmetal.problem import ZDT1\n",
"from jmetal.util.termination_criterion import StoppingByEvaluations\n",
"\n",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,8 @@
"outputs": [],
"source": [
"from jmetal.algorithm.multiobjective.mocell import MOCell\n",
"from jmetal.operator import SBXCrossover, PolynomialMutation\n",
"from jmetal.operator.crossover import SBXCrossover\n",
"from jmetal.operator.mutation import PolynomialMutation\n",
"from jmetal.problem import ZDT4\n",
"from jmetal.util.archive import CrowdingDistanceArchive\n",
"from jmetal.util.neighborhood import C9\n",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,8 @@
"outputs": [],
"source": [
"from jmetal.algorithm.multiobjective.moead import MOEAD\n",
"from jmetal.operator import PolynomialMutation, DifferentialEvolutionCrossover\n",
"from jmetal.operator.mutation import PolynomialMutation\n",
"from jmetal.operator.crossover import DifferentialEvolutionCrossover\n",
"from jmetal.problem import LZ09_F2\n",
"from jmetal.util.aggregative_function import Tschebycheff\n",
"from jmetal.util.termination_criterion import StoppingByEvaluations\n",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,8 @@
"outputs": [],
"source": [
"from jmetal.algorithm.multiobjective.nsgaii import NSGAII\n",
"from jmetal.operator import SBXCrossover, PolynomialMutation\n",
"from jmetal.operator.crossover import SBXCrossover\n",
"from jmetal.operator.mutation import PolynomialMutation\n",
"from jmetal.problem import ZDT1\n",
"from jmetal.util.termination_criterion import StoppingByEvaluations\n",
"\n",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,8 @@
"outputs": [],
"source": [
"from jmetal.algorithm.multiobjective.nsgaii import DynamicNSGAII\n",
"from jmetal.operator import PolynomialMutation, SBXCrossover\n",
"from jmetal.operator.crossover import SBXCrossover\n",
"from jmetal.operator.mutation import PolynomialMutation\n",
"from jmetal.problem.multiobjective.fda import FDA2\n",
"from jmetal.util.observable import TimeCounter\n",
"from jmetal.util.observer import PlotFrontToFileObserver, WriteFrontToFileObserver\n",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,8 @@
"outputs": [],
"source": [
"from jmetal.algorithm.multiobjective.nsgaii import NSGAII\n",
"from jmetal.operator import SBXCrossover, PolynomialMutation\n",
"from jmetal.operator.crossover import SBXCrossover\n",
"from jmetal.operator.mutation import PolynomialMutation\n",
"from jmetal.problem import ZDT2\n",
"from jmetal.util.comparator import GDominanceComparator\n",
"from jmetal.util.termination_criterion import StoppingByEvaluations\n",
Expand Down
48 changes: 28 additions & 20 deletions docs/_sources/api/algorithm/multiobjective/eas/spea2.ipynb.txt
Original file line number Diff line number Diff line change
Expand Up @@ -25,17 +25,20 @@
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"pycharm": {
"is_executing": false,
"name": "#%%\n"
},
"ExecuteTime": {
"end_time": "2024-06-24T10:53:43.386467Z",
"start_time": "2024-06-24T10:53:42.730673Z"
}
},
"outputs": [],
"source": [
"from jmetal.algorithm.multiobjective.spea2 import SPEA2\n",
"from jmetal.operator import SBXCrossover, PolynomialMutation\n",
"from jmetal.operator.crossover import SBXCrossover\n",
"from jmetal.operator.mutation import PolynomialMutation\n",
"from jmetal.problem import ZDT1\n",
"from jmetal.util.termination_criterion import StoppingByEvaluations\n",
"\n",
Expand All @@ -54,7 +57,21 @@
"\n",
"algorithm.run()\n",
"solutions = algorithm.get_result()"
]
],
"outputs": [
{
"ename": "TypeError",
"evalue": "unsupported operand type(s) for /: 'float' and 'method'",
"output_type": "error",
"traceback": [
"\u001B[0;31m---------------------------------------------------------------------------\u001B[0m",
"\u001B[0;31mTypeError\u001B[0m Traceback (most recent call last)",
"Cell \u001B[0;32mIn[1], line 15\u001B[0m\n\u001B[1;32m 7\u001B[0m problem \u001B[38;5;241m=\u001B[39m ZDT1()\n\u001B[1;32m 9\u001B[0m max_evaluations \u001B[38;5;241m=\u001B[39m \u001B[38;5;241m20000\u001B[39m\n\u001B[1;32m 11\u001B[0m algorithm \u001B[38;5;241m=\u001B[39m SPEA2(\n\u001B[1;32m 12\u001B[0m problem\u001B[38;5;241m=\u001B[39mproblem,\n\u001B[1;32m 13\u001B[0m population_size\u001B[38;5;241m=\u001B[39m\u001B[38;5;241m40\u001B[39m,\n\u001B[1;32m 14\u001B[0m offspring_population_size\u001B[38;5;241m=\u001B[39m\u001B[38;5;241m40\u001B[39m,\n\u001B[0;32m---> 15\u001B[0m mutation\u001B[38;5;241m=\u001B[39mPolynomialMutation(probability\u001B[38;5;241m=\u001B[39m\u001B[38;5;241;43m1.0\u001B[39;49m\u001B[43m \u001B[49m\u001B[38;5;241;43m/\u001B[39;49m\u001B[43m \u001B[49m\u001B[43mproblem\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mnumber_of_variables\u001B[49m, distribution_index\u001B[38;5;241m=\u001B[39m\u001B[38;5;241m20\u001B[39m),\n\u001B[1;32m 16\u001B[0m crossover\u001B[38;5;241m=\u001B[39mSBXCrossover(probability\u001B[38;5;241m=\u001B[39m\u001B[38;5;241m1.0\u001B[39m, distribution_index\u001B[38;5;241m=\u001B[39m\u001B[38;5;241m20\u001B[39m),\n\u001B[1;32m 17\u001B[0m termination_criterion\u001B[38;5;241m=\u001B[39mStoppingByEvaluations(\u001B[38;5;28mmax\u001B[39m\u001B[38;5;241m=\u001B[39mmax_evaluations)\n\u001B[1;32m 18\u001B[0m )\n\u001B[1;32m 20\u001B[0m algorithm\u001B[38;5;241m.\u001B[39mrun()\n\u001B[1;32m 21\u001B[0m solutions \u001B[38;5;241m=\u001B[39m algorithm\u001B[38;5;241m.\u001B[39mget_result()\n",
"\u001B[0;31mTypeError\u001B[0m: unsupported operand type(s) for /: 'float' and 'method'"
]
}
],
"execution_count": 1
},
{
"cell_type": "markdown",
Expand All @@ -65,27 +82,16 @@
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"pycharm": {
"is_executing": false,
"name": "#%%\n"
},
"ExecuteTime": {
"end_time": "2024-06-24T10:53:43.387543Z",
"start_time": "2024-06-24T10:53:43.387475Z"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEjCAYAAADdZh27AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAH8VJREFUeJzt3Xu8XGV97/HPlyQYQW6aKJgQgxqKNPUc6JZLRYyKNiCSY7GeoBSiaKyeUK3WllOt5ER7ehTvlUpjxYAXEHM8sKsonogUEEizKYohXAyRyw4oUS6C3JLw6x/PmmFlZWbP7L1nzfX7fr3mtfes9cya55nZe36znt/zPEsRgZmZGcAuna6AmZl1DwcFMzOrclAwM7MqBwUzM6tyUDAzsyoHBTMzq3JQ6BKSlkiK3O1hST+VtEzS1A7UZ4Gk5ZJa+jci6UhJayX9Lmvnf23l8Zt4/uWSXt3O5+xWkuZm78GSDjzvckkvrLHvDkmr2lkf25GDQvf5U+BI4ETg34F/BD7SgXosAM6k9X8jXwamAm8gtfO2Fh+/kTMBB4XkXtJ78N02P+9c0vuwU1AA3gh8tK21sR20/RuoNfSTiNiY/f4DSS8G3sskA4OkKYAiYttkKziJOuwC/B7w9xFxeYOyz4iIJ9pTs+4naRqwLVo42zR7fa9r1fFaISJu6HQdBl5E+NYFN2AJEMCLC9s/kW1/bnZ/MXA5sAV4BLgBOLXG8QL4e+AM4BfAduCQbN9M4BxgM/AEcAuwNPfY5dnjd7jl9u8HnA/8Onv8jcDJTbYvf7sj27cKGCV9a70GeAz4XLZvGvAx4A7gyeznx4BpuWPPzY73LmAF6Rvwg8C/ArMLr0nxtnyMOr8Y+Gr2+j0GbAK+COxTKFep/x8B64DHs3qeXuc1OBq4OHv/fgOcDTyzRnvek73/9wBPVZ4XOAxYkz3+d8APgcNyj98XuA/4f4Xnf2d23OMLz7OkRluGcu/FrcDrs/3vz9r2W+ASYGbhOZYB1wL3Z+/BdZXHZvsX1HkfFmT77wBWFY45ZnsL9T4EuAp4FPg58Oed/t/utVvHK+Bb9kbUDwrfArYBu2X3/zb7sHgdcAzpQ3Br8Y8/O9bm7B/kRGAh8Dxgz+yf/K7sQ+IY4CxS0Dg9e+xs4F+yY7wcOAI4Itu3O6nLZwuwFDgW+HpWdukY7ZuZHSuyYx/B00FqFfAwcCdwevbBcXi27xtZ+1dkbV6etfcbuWPPzY57R1b+WOBUUtC6IlfuiKzcVyptIhc0atT5aOB/A4uy35dkbb+2UG4V6UPybtKH4sJsW/EDt/Ie3wV8MmvPh0nBblWN9mwmBY/jszo8E3gp6YP6euBN2Xu7Ltv2X3LHeH12jD/P7r+E9IH6+RrPs6RGWzYAb8/achUp0H2KFGhfn+37LXBR4bX4JHAa8Brgj4EvZM+xMNu/J+nvN7L3uvI+7Jntv6PwWjTb3kq9byZ9OXht9rcQwKs6/f/dS7eOV8C37I14+gPj90jdevtkf9zbgYvrPGaXrOyXgJ8W9gXpG+YzC9v/LvsHn1fY/iXSh+jU7P7y7BhTC+WWkftml9u+hvTtdMoYbZxKjW/nPP0BuqiwfX6d8h/Otr80u1/5cLuiUO6vsu3PL7wuH5vgezQVOCo7xiE16r+4UP7/kwKdCu/xOYVyH8re5wML7fmPymNzZVeTvoHvndu2J+mb+bcLZT9H+sZ8KPDT7PaM3P7K8yyp0Zajc9temm27Nf/+Ap8mBeia73nu7/MHwCW57Quy4x1T4zF3sGNQaKq9uXq/KrftGaQzsZXt/n/u5ZsTzd3nFtI/2v3AP5G+hb+9slPSPEkXSNqcldsKvIMUTIq+HxGPFbYtBNYCv5A0tXIDLgOeAxzcoH5HA5sj4orC9q+RzgYaPb6ercB3ajxX5djF5wJ4ZWH7pYX7P8t+zplIhSTtKulvJd0i6bGsjldlu4uv93bg/xa2XZg996zC9otqlNuF1E2Sd3Fkn245RwPfiYgHKxsi4rfAMDu/Hn9NOrO5BpgHnBTN5Wl+FxFX5u7fkv1cExHbC9unkroTAZD0h5K+I+lXpDO8raRv7bX+PpsxnvY+GhE/ypV7gtT+Cb3/g8qJ5u7zRlLf6MPAnRHxeGWHpGeRvn0+SsoV3E7qeng3ucCRc2+Nbc8l9ZVvrfP8z2lQv2fXOe4vc/snYkvhAyd/rOLz1Xuu+wv3Kx+A0ydYp38gdXGsIH2wPkzqWvt2jWM+EBHF1/RX2c9ZpPe0uL1Wubxar/NYr/8++Q0R8YSkb5K6wC6JiA01HlfLg/k7EfGkJIAHCuWezH5OB5C0P6m/fwPpdbuLFBg+Suq+moim21ujfpD+Bib6/g8kB4Xusz6eHn1UdCTwAuAVEXF1ZeMY8xiK3zIhnU7fRxrRVMutDep3P7W/9e2b2z8RtepaOda+pADYqudq1mLg/Ij4WGVDFphr2UfStEJgeF72c3Oh7POAm5ooV+812bfG9n0pfChK+n1Sd+EIsEjSooi4pE79W2EhsBfw5oioBkFJu03imE2311rD3Ue9pfLPVf3gkbQPKQnZrO8DBwF3RcRIjdvDWbnKt+xnFh7/b8BsSS8vbH8LKdg0+220GZUujMWF7W/Nfl4xgWM+yc5tqmc3dj6jeludslNISdC8xaRvy8UP+zfXKPcUqVuvkX8DjpO0R2VD9vsbyL0ekqYDF5C6eF5OOrv5sqTnN/EcE1Xr7/PA7Pnz6v1t1dJUe611fKbQW64hjbA4W9KZpJFAHyYliPdq8hifAf47cJWkz5DODHYnBYpXREQlwFQ+3D8g6XvA9ogYISX03gt8W9KHSN0ibyX1G7+rRhfQhEXEekkXAMuzs6FrSGdLfwdcEBE/G/MAtW0AXi/p+6RvmvdExD11yn4fOFXSz4CNwJ+Qhp3W8jDwCUkzSEMhTyKN7FpSIy9wnKSzSAnYw0gTuc6PiJ83Uf+PkkYj/VDSx0lnE39D+kBekSt3FvAi4NCs++edpETz+ZJeW6NOrbCG1F10vqRPkXIN/4sUGPNfQG/Lyr1d0v2kIHFr7gtJXrPttVbpdKbbt3SjzpDUGuVeTZqb8BipS+UvyEYKFcrVHWVD6ov9DGn8/ZOkb/hXAe/LlZlCGj9/H+lbbOT27Ucav9/0PIXscWONPhqt85hdSfMS7iR9A72T+vMU3lF47AIKI6VI31qvJ43A2qkuhcfPICWBH8huXwdeRv2x/fl5CncCf1HnPT6aNMb/EVL3SL15Cu+oU6/DGXuewvF1Xo9XkhLif1N4np3aUuM5d/p7osbfLOks6JbsNbiJdBa0imxOSq7cu0jzPrbl3yNqz1MYs70N6n0FhVFpvo19qwyVM7MJytbqOSYiZjcot4Q0R2Je1M8bmXWUcwpmZlbloGA9TdJRkq6R9JCk+yX9WNLLslVnt0t6RNJvJf1E0vHZYxZIeirbl78dWTj2KknbJO1X2H6qpOuz444Cf9igjo9IeoS0tAjATyVtlbQp25+v6yOSfiHpK1mSFkmvyO2rrC6br/ccSW/OXodHJV3RmlfXBpGDgvUsSXuSJrz9I2k8+yxSYrMyuuXaiHgWsDdpddaLstFakBLMzyrcrs0de3fSaKKHgJMLT70b8D5SzuFwUl7mC/XqmTv+9IgQaSLZ/ey4GmilrnuREtSPAddLmh8RV1WOAfx+Vn7v3HHvyo73WeD/NPXimdXhoGC97ECAiLggIrZHxGMR8YOIuDFfKCKeAs4lDYF8UZPHPpE0iWsFaR2l/PG+mH1QPxkRm0kJ6OKwy5qyUVQXAf8aEV8p7s/acXtEvIc0HHN5M8eNiDURcRFpaROzCXNQsF52G7Bd0nmSjs2dBewg+yB+B2n0SjPDPiEFggtIo48OkjRWF9HR7DgZbSyfIA0BXtZE2W8Dr2jyuGYt4aBgPSvSGjiVBeq+BGyRNCypMkP4CEkPkpZEOAl4Y0Q8lO17vqQHC7fdASTNAV5FWon1V6QhkKfUqoOkt5OWmf5ko/pKOpE0+e3EyC1fMoZ7mPiyIWYT4qBgPS0ibo6IJdlw0PnA80l96wDXRcTeETEjIo6IiDW5h96T7cvffpft+zPg5oj4SXb/68BbsgvdVEn6b6T1kY6NiF9n296aSwB/L1f2QFJe49SI2NRk82ZR/lIeZjtwULC+ERG3kCYxzZ/koU4BXijpl5J+SVoiegZwXKWApIWks5M3RG5mdUR8PZcAPjYruxtpBdVzImJ4HPV4I0+vymrWFl7mwnqWpINIF3z5ZkSMZqt0nsQkLjGZDUt9EekKXltyuz5FChaXSHo16ezhjRHx700c9hzSQoQfauL5p5CWen4/aUb2kWM+YMfHTSP9T++SrX20PXZeudVsTA4K1sseJg0Jfb+kvUmjhb4DfJC0TtFYnp/NHcg7lbSG0yVRWFdJ0udI60U9m7T20l7ApUpLSgNcVTkzKDxuDqk76gngoVx5IA1XzX49MquPyK4YB7wsIm5u0I6KPyPNlq54DDiPtBSFWdO8zIWZmVU5p2BmZlUOCmZmVuWgYGZmVQ4KZmZW1XOjj2bMmBFz587tdDXMzHrK9ddf/+uImNmoXM8Fhblz5zIyMtLpapiZ9RRJdzZTzt1HZmZW5aBgZmZVDgpmZlbloGBmZlUOCmZmVuWgYGZmVaUFBUnnSrpP0vo6+yXp85I2SrpR0qFl1cXMzJpT5pnCKmDhGPuPBeZlt6XAF0usi5mZNaG0oBARVzL2pQQXAedHch2wt6T9yqpPxZr1oyxfvY4160fLfiozs57TyZzCLODu3P3RbFtp1qwf5X3nXc3Xrr6N9513tQODmVlBTySaJS2VNCJpZMuWLY0fUMfVt9zL41u3A/D41u1cfcu9raqimVlf6GRQ2Azsn7s/O9u2k4hYGRFDETE0c2bD9ZzqOuqg/Zg+bQoA06dN4aiDSu+tMjPrKZ1cEG8YWCbpQtJ1dh+KiFK/uh8zfzafPfUorr7lXo46aD+OmT+7zKczM+s5pQUFSRcAC4AZkkaBM4FpABFxDnApcBywEXgUeFtZdck7Zv5sBwMzszpKCwoRcVKD/QH8j7Ke38zMxq/nrqcwWWvWj7r7yMysjp4YfdQqHpJqZja2gQoKHpJqZja2gQoKHpJqZja2gcopeEiqmdnYBioogIekmpmNZaC6j8zMbGwOCmZmVjVw3UcVnq9gZrazgTxT8HwFM7PaBjIoeL6CmVltAxkUPF/BzKy2gcwpeL6CmVltAxkUwPMVzMxqGcjuIzMzq21gzxQqPDTVzOxpA32m4KGpZmY7Guig4KGpZmY7Guig4KGpZmY7GuicgoemmpntaKCDAnhoqplZ3kB3H5mZ2Y4G/kwhz8NTzWzQ+Uwh4+GpZmYOClUenmpm5qBQ5eGpZmbOKVR5eKqZmYPCDjw81cwGnYNCHR6JZGaDyDmFGjwSycwGValBQdJCSbdK2ijpjBr750j6kaQbJN0o6bgy69Msj0Qys0FVWlCQNAU4GzgWOBg4SdLBhWIfBi6KiEOAxcA/lVWf8fBIJDMbVGXmFA4DNkbEJgBJFwKLgA25MgHsmf2+F3BPifVpmkcimdmgKjMozALuzt0fBQ4vlFkO/EDS6cDuwDEl1mdc8iORnHQ2s0HR6UTzScCqiJgNHAd8VdJOdZK0VNKIpJEtW7a0tYJOOpvZICkzKGwG9s/dn51tyzsNuAggIq4FpgMzigeKiJURMRQRQzNnziypurU56Wxmg6TMoLAOmCfpAEm7khLJw4UydwGvAZD0ElJQaO+pQANOOpvZICktpxAR2yQtAy4DpgDnRsRNklYAIxExDHwA+JKkvyQlnZdERJRVp4lw0tnMBom67DO4oaGhoRgZGel0NczMeoqk6yNiqFG5Tieazcysi3jtownwEFUz61c+UxgnD1E1s37moDBOHqJqZv3MQWGcPETVzPqZcwrj5CGqZtbPHBQmwFdoM7N+5aDQQh6VZGa9zjmFFvGoJDPrBw4KLeJRSWbWDxwUWsSjksysHzin0CIelWRm/cBBoYU8KsnMep27j8zMrMpBwczMqtx91Caew2BmvcBnCm3gOQxm1iscFNrAcxjMrFc4KLSB5zCYWa9wTqENPIfBzHqFg0KbeA6DmfUCdx+ZmVmVzxS6gIermlm38JlCh3m4qpl1EweFDvNwVTPrJg4KHebhqmbWTZxT6DAPVzWzbuKg0AXqDVd1AtrM2s3dR13KCWgz6wQHhS7lBLSZdUKpQUHSQkm3Stoo6Yw6Zd4saYOkmyR9o8z69BInoM2sE0rLKUiaApwNvBYYBdZJGo6IDbky84D/Cbw8Ih6Q9Nyy6tNrnIA2s04oM9F8GLAxIjYBSLoQWARsyJV5J3B2RDwAEBH3lVifnuP1ksys3crsPpoF3J27P5ptyzsQOFDSjyVdJ2lhifXpK2vWj7J89TonoM2spTo9JHUqMA9YAMwGrpT0BxHxYL6QpKXAUoA5c+a0u45dpzIy6fGt21m99nY+e+pRPqMws5Yo80xhM7B/7v7sbFveKDAcEVsj4hfAbaQgsYOIWBkRQxExNHPmzNIq3Cs8MsnMylJmUFgHzJN0gKRdgcXAcKHMxaSzBCTNIHUnbSqxTn3BI5PMrCyldR9FxDZJy4DLgCnAuRFxk6QVwEhEDGf7XidpA7Ad+GBE/KasOvULj0wys7IoIjpdh3EZGhqKkZGRTlfDzKynSLo+IoYalet0otlK4DWTzGyivMxFn/GaSWY2GQ4KfcYjk8xsMhwU+kyjkUme9GZmY3GiuQ/VyynkJ71NnzbFk97MBogTzQOs3ppJtbqWHBTMLM/dRwPEk97MrBGfKQwQT3ozs0YcFAaMl+M2s7G4+8jMzKp8pmBVngltZj5TMMAzoc0scVAwwDOhzSxpGBQknS5pn3ZUxjrHw1XNDJrLKTwPWCfpP4Bzgcui16ZBW0Mermpm0OQyF5IEvA54GzAEXAR8OSJuL7d6O/MyF2Zm49fsMhdN5RSyM4NfZrdtwD7AakmfmFQtrWd5YT2z/tSw+0jSe4FTgF8D/0K6ZOZWSbsAPwf+utwqWrfJL6y3eu3tXljPrI80c6bwbOBPIuKPI+JbEbEVICKeAo4vtXbWlTxSyax/NQwKEXFmRNxZZ9/Nra+SdTuPVDLrX57RbOPmkUpm/ctBwSbEC+uZ9ScHBSud11Qy6x1e5sJK5TWVzHqLg4KVyiOVzHqLg4KVyiOVzHqLcwpWKo9UMustDgpWurFGKjkJbdZd3H1kHeMktFn3cVCwjnES2qz7lBoUJC2UdKukjZLOGKPciZJCUsNlXa1/OAlt1n1KyylImgKcDbwWGCVdqGc4IjYUyu0BvBdYW1ZdrDs1k4R2zsGsvcpMNB8GbIyITQCSLgQWARsK5T4KfBz4YIl1sS7VKAntJbrN2qvM7qNZwN25+6PZtipJhwL7R8R3S6yH9SjnHMzar2OJ5uwiPZ8GPtBE2aWSRiSNbNmypfzKWVdwzsGs/crsPtoM7J+7PzvbVrEHMB+4Il0Cmn2BYUknRMQOF2GOiJXASkjXaC6xztZFPPHNrP3KDArrgHmSDiAFg8XAWyo7I+IhYEblvqQrgL8qBgQbbONZottJabPJK637KCK2AcuAy4CbgYsi4iZJKySdUNbz2mDyRDiz1ih1mYuIuBS4tLDtI3XKLiizLtbfaiWlfbZgNn6e0Wx9wUlps9bwgnjWF5yUNmsNBwXrG75utNnkOSjYQPEIJbOxOadgA8MjlMwac1CwgeFlM8wac1CwgeERSmaNOadgA8MjlMwac1CwgdLsCCUnpG1QufvIrMAJaRtkDgpmBU5I2yBzUDArcELaBplzCmYF40lIO/dg/UYRvXXNmqGhoRgZ8SUXrPPy15CePm2KryFtXU3S9REx1Kicu4/MJsi5B+tHDgpmE+Tcg/Uj5xTMJsiT4awfOSiYTYInw1m/cfeRWck8Gc56iYOCWcmckLZe4qBgVjInpK2XOKdgVrJmE9LOO1g38OQ1sy7giXBWNk9eM+shzjtYt3BQMOsCzeQd1qwfZfnqdR69ZKVy95FZlxgrp+DuJZusZruPnGg26xJjTYSr1b3koGBlcPeRWQ/wsFZrF58pmPUAr7Nk7eKgYNYjml1nCTznwSau1O4jSQsl3Sppo6Qzaux/v6QNkm6U9ENJLyizPmaDwGst2WSUFhQkTQHOBo4FDgZOknRwodgNwFBEvBRYDXyirPqYDQrPebDJKPNM4TBgY0RsiogngQuBRfkCEfGjiHg0u3sd4PNcs0lyUtomo8ycwizg7tz9UeDwMcqfBnyvxPqYDYTxJKWde7Cirkg0SzoZGAJeWWf/UmApwJw5c9pYM7Pe1ExSOj8hbvXa2z0hzoByu482A/vn7s/Otu1A0jHAh4ATIuKJWgeKiJURMRQRQzNnziylsmaDxrkHq6XMoLAOmCfpAEm7AouB4XwBSYcA/0wKCPeVWBczK3DuwWoprfsoIrZJWgZcBkwBzo2ImyStAEYiYhg4C3gW8C1JAHdFxAll1cnMnubcg9XiBfHMbExejK8/+HoKZtYSzj0MFgcFMxtTs7kHX++hP7j7yMwaapRTcBdT9/P1FMysZRrNe/D1HvqHu4/MbNI8vLV/+EzBzCbNw1v7h3MKZtY2zj10joekmlnX8fDW7uegYGZt49xD93NOwczaxrmH7uecgpl1HeceWs85BTPrWc49dI6Dgpl1nWZyD15WoxzuPjKzrjRWTsHdS+PnZS7MrKeNtbRGM8tqOFE9Me4+MrOe06h7qXIm8bWrb+N9513tLqZx8JmCmfWcRkNbvUDfxDkomFlPGqt76aiD9mP12turOQdPkmueg4KZ9Z1mJ8k577Azjz4ys4E0aCOYPHnNzGwMniBXm4OCmQ2k8S7ONyiT5dx9ZGYDq9mcQj90NXnymplZA42uPV0xSENc3X1kZtZAs11N/dDF5O4jM7MmNOpq6vYuJncfmZm1UKOupn7pYnL3kZlZC/TLpUZ9pmBm1gL9cqlR5xTMzNqoU7mHrpjRLGmhpFslbZR0Ro39z5D0zWz/Wklzy6yPmVmndftM6tKCgqQpwNnAscDBwEmSDi4UOw14ICJeDHwG+HhZ9TEz6wbdPpO6zJzCYcDGiNgEIOlCYBGwIVdmEbA8+3018AVJil7r0zIza9J4cw+VrqbVa29vS1dTmUFhFnB37v4ocHi9MhGxTdJDwHOAX5dYLzOzjurmmdQ9MSRV0lJJI5JGtmzZ0unqmJm1RSeGuZZ5prAZ2D93f3a2rVaZUUlTgb2A3xQPFBErgZWQRh+VUlszsy4znq6mVikzKKwD5kk6gPThvxh4S6HMMHAqcC3wJuBy5xPMzJ7WbFdTq5QWFLIcwTLgMmAKcG5E3CRpBTASEcPAl4GvStoI3E8KHGZm1iGlzmiOiEuBSwvbPpL7/XHgT8usg5mZNa8nEs1mZtYeDgpmZlbloGBmZlUOCmZmVuWgYGZmVQ4KZmZW1XPXU5C0BbhzkoeZwWCtr+T29r9Ba7PbO34viIiZjQr1XFBoBUkjzVxsol+4vf1v0Nrs9pbH3UdmZlbloGBmZlWDGhRWdroCbeb29r9Ba7PbW5KBzCmYmVltg3qmYGZmNfRtUJC0UNKtkjZKOqPG/mdI+ma2f62kue2vZWs10eb3S9og6UZJP5T0gk7Us1UatTdX7kRJIamnR6s0015Jb87e45skfaPddWy1Jv6m50j6kaQbsr/r4zpRz1aQdK6k+yStr7Nfkj6fvRY3Sjq0lIpERN/dSNdvuB14IbAr8FPg4EKZ9wDnZL8vBr7Z6Xq3oc2vAnbLfn93L7e5mfZm5fYArgSuA4Y6Xe+S3995wA3APtn953a63m1o80rg3dnvBwN3dLrek2jv0cChwPo6+48DvgcIOAJYW0Y9+vVM4TBgY0RsiogngQuBRYUyi4Dzst9XA6+RpDbWsdUatjkifhQRj2Z3ryNdIrVXNfMeA3wU+DjweDsrV4Jm2vtO4OyIeAAgIu5rcx1brZk2B7Bn9vtewD1trF9LRcSVpIuN1bMIOD+S64C9JbX8os39GhRmAXfn7o9m22qWiYhtwEPAc9pSu3I00+a800jfOnpVw/Zmp9f7R8R321mxkjTz/h4IHCjpx5Kuk7SwbbUrRzNtXg6cLGmUdEGv09tTtY4Y7//4hJR65TXrTpJOBoaAV3a6LmWRtAvwaWBJh6vSTlNJXUgLSGeBV0r6g4h4sKO1KtdJwKqI+JSkI0mX950fEU91umK9ql/PFDYD++fuz8621SwjaSrp1PM3baldOZppM5KOAT4EnBART7SpbmVo1N49gPnAFZLuIPXBDvdwsrmZ93cUGI6IrRHxC+A2UpDoVc20+TTgIoCIuBaYTlonqB819T8+Wf0aFNYB8yQdIGlXUiJ5uFBmGDg1+/1NwOWRZXN6VMM2SzoE+GdSQOj1/uYx2xsRD0XEjIiYGxFzSTmUEyJipDPVnbRm/qYvJp0lIGkGqTtpUzsr2WLNtPku4DUAkl5CCgpb2lrL9hkGTslGIR0BPBQR97b6Sfqy+ygitklaBlxGGsFwbkTcJGkFMBIRw8CXSaeaG0nJncWdq/HkNdnms4BnAd/Kcup3RcQJHav0JDTZ3r7RZHsvA14naQOwHfhgRPTs2W+Tbf4A8CVJf0lKOi/p1S93ki4gBfUZWY7kTGAaQEScQ8qZHAdsBB4F3lZKPXr09TMzsxL0a/eRmZlNgIOCmZlVOSiYmVmVg4KZmVU5KJiZWZWDgpmZVTkomJlZlYOC2SRJelm2vv10Sbtn1zKY3+l6mU2EJ6+ZtYCkj5GWWHgmMBoR/9DhKplNiIOCWQtka/OsI1234Y8iYnuHq2Q2Ie4+MmuN55DWldqDdMZg1pN8pmDWApKGSVcGOwDYLyKWdbhKZhPSl6ukmrWTpFOArRHxDUlTgGskvToiLu903czGy2cKZmZW5ZyCmZlVOSiYmVmVg4KZmVU5KJiZWZWDgpmZVTkomJlZlYOCmZlVOSiYmVnVfwLWbQPNrqsEkgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"from jmetal.lab.visualization.plotting import Plot\n",
"from jmetal.util.solution import get_non_dominated_solutions\n",
Expand All @@ -94,7 +100,9 @@
" \n",
"plot_front = Plot(plot_title='Pareto front approximation', axis_labels=['x', 'y'])\n",
"plot_front.plot(front, label='SPEA2-ZDT1')"
]
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "markdown",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@
"outputs": [],
"source": [
"from jmetal.algorithm.multiobjective.omopso import OMOPSO\n",
"from jmetal.operator import UniformMutation\n",
"from jmetal.operator.mutation import UniformMutation\n",
"from jmetal.operator.mutation import NonUniformMutation\n",
"from jmetal.problem import ZDT1\n",
"from jmetal.util.archive import CrowdingDistanceArchive\n",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@
"outputs": [],
"source": [
"from jmetal.algorithm.multiobjective.smpso import SMPSO\n",
"from jmetal.operator import PolynomialMutation\n",
"from jmetal.operator.mutation import PolynomialMutation\n",
"from jmetal.problem import ZDT4\n",
"from jmetal.util.archive import CrowdingDistanceArchive\n",
"from jmetal.util.termination_criterion import StoppingByEvaluations\n",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@
"outputs": [],
"source": [
"from jmetal.algorithm.multiobjective.smpso import DynamicSMPSO\n",
"from jmetal.operator import PolynomialMutation\n",
"from jmetal.operator.mutation import PolynomialMutation\n",
"from jmetal.problem.multiobjective.fda import FDA2\n",
"from jmetal.util.archive import CrowdingDistanceArchive\n",
"from jmetal.util.observable import TimeCounter\n",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@
],
"source": [
"from jmetal.algorithm.multiobjective.smpso import SMPSORP\n",
"from jmetal.operator import PolynomialMutation\n",
"from jmetal.operator.mutation import PolynomialMutation\n",
"from jmetal.problem import ZDT4\n",
"from jmetal.util.archive import CrowdingDistanceArchiveWithReferencePoint\n",
"from jmetal.util.termination_criterion import StoppingByEvaluations\n",
Expand Down
Loading

0 comments on commit 2dc65a4

Please sign in to comment.