-
Notifications
You must be signed in to change notification settings - Fork 2.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* feat: add hub push runner * fix: hub push yaml * fix: hub push yaml * fix: debug script * fix: debug script * fix: debug script * fix: debug script * fix: debug script * fix: debug script * fix: debug script * fix: debug script * fix: debug script * fix: comment manifest * fix: revert manifest * fix: use relative import * fix: change base folder * fix: hub push * fix: bumb jina version * fix: get requirments.txt * fix: turnon workflow on PR * fix: update dockerfile * fix: error * fix: executor name * fix: use jinahub auth token * fix: test torch upload * fix: docker * fix: upload gpu executor * fix: gpu tag * fix: gpu tag * feat: upload onnx executor * fix: debug onnx upload * fix: debug onnx upload * fix: minor revision * fix: add torch exec readme * fix: add onnx exec readme * chore: update exec readme * fix: update readme * chore: update readme * chore: onnx readme * chore: update readme * docs: fix batch_size * docs: fix batch_size * chore: updates * chore: upload pytorch and onnx runtime based executors * fix: use relative imports Co-authored-by: numb3r3 <[email protected]>
- Loading branch information
Showing
15 changed files
with
614 additions
and
42 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,177 @@ | ||
# CLIPOnnxEncoder | ||
|
||
**CLIPOnnxEncoder** is the executor implemented in [clip-as-service](https://github.com/jina-ai/clip-as-service). | ||
It serves OpenAI released [CLIP](https://github.com/openai/CLIP) models with ONNX runtime (🚀 **3x** speed up). | ||
The introduction of the CLIP model [can be found here](https://openai.com/blog/clip/). | ||
|
||
- 🔀 **Automatic**: Auto-detect image and text documents depending on their content. | ||
- ⚡ **Efficiency**: Faster CLIP model inference on CPU and GPU via ONNX runtime. | ||
- 📈 **Observability**: Monitoring the serving via Prometheus and Grafana (see [Usage Guide](https://docs.jina.ai/how-to/monitoring/#deploying-locally)). | ||
|
||
|
||
## Model support | ||
|
||
Open AI has released 9 models so far. `ViT-B/32` is used as default model. Please also note that different model give **different size of output dimensions**. | ||
|
||
| Model | ONNX | Output dimension | | ||
|----------------|-----| --- | | ||
| RN50 | ✅ | 1024 | | ||
| RN101 | ✅ | 512 | | ||
| RN50x4 | ✅ | 640 | | ||
| RN50x16 | ✅ | 768 | | ||
| RN50x64 | ✅ | 1024 | | ||
| ViT-B/32 | ✅ | 512 | | ||
| ViT-B/16 | ✅ | 512 | | ||
| ViT-L/14 | ✅ | 768 | | ||
| ViT-L/14@336px | ✅ | 768 | | ||
|
||
## Usage | ||
|
||
### Use in Jina Flow | ||
|
||
- **via Docker image (recommended)** | ||
|
||
```python | ||
from jina import Flow | ||
from docarray import Document | ||
import numpy as np | ||
|
||
f = Flow().add( | ||
uses='jinahub+docker://CLIPOnnxEncoder', | ||
) | ||
``` | ||
|
||
- **via source code** | ||
|
||
```python | ||
from jina import Flow | ||
from docarray import Document | ||
import numpy as np | ||
|
||
f = Flow().add( | ||
uses='jinahub://CLIPOnnxEncoder', | ||
) | ||
``` | ||
|
||
You can set the following parameters via `with`: | ||
|
||
| Parameter | Description | | ||
|-----------|-------------------------------------------------------------------------------------------------------------------------------| | ||
| `name` | Model weights, default is `ViT-B/32`. Support all OpenAI released pretrained models. | | ||
| `num_worker_preprocess` | The number of CPU workers for image & text prerpocessing, default 4. | | ||
| `minibatch_size` | The size of a minibatch for CPU preprocessing and GPU encoding, default 16. Reduce the size of it if you encounter OOM on GPU. | | ||
| `device` | `cuda` or `cpu`. Default is `None` means auto-detect. | | ||
|
||
### Encoding | ||
|
||
Encoding here means getting the fixed-length vector representation of a sentence or image. | ||
|
||
```python | ||
from jina import Flow | ||
from docarray import Document, DocumentArray | ||
|
||
da = DocumentArray( | ||
[ | ||
Document(text='she smiled, with pain'), | ||
Document(uri='apple.png'), | ||
Document(uri='apple.png').load_uri_to_image_tensor(), | ||
Document(blob=open('apple.png', 'rb').read()), | ||
Document(uri='https://clip-as-service.jina.ai/_static/favicon.png'), | ||
Document( | ||
uri='' | ||
), | ||
] | ||
) | ||
|
||
f = Flow().add( | ||
uses='jinahub+docker://CLIPTorchEncoder', | ||
) | ||
with f: | ||
f.post(on='/', inputs=da) | ||
da.summary() | ||
``` | ||
|
||
From the output, you will see all the text and image docs have `embedding` attached. | ||
|
||
```text | ||
╭──────────────────────────── Documents Summary ─────────────────────────────╮ | ||
│ │ | ||
│ Length 6 │ | ||
│ Homogenous Documents False │ | ||
│ 4 Documents have attributes ('id', 'mime_type', 'uri', 'embedding') │ | ||
│ 1 Document has attributes ('id', 'mime_type', 'text', 'embedding') │ | ||
│ 1 Document has attributes ('id', 'embedding') │ | ||
│ │ | ||
╰────────────────────────────────────────────────────────────────────────────╯ | ||
╭────────────────────── Attributes Summary ───────────────────────╮ | ||
│ │ | ||
│ Attribute Data type #Unique values Has empty value │ | ||
│ ───────────────────────────────────────────────────────────── │ | ||
│ embedding ('ndarray',) 6 False │ | ||
│ id ('str',) 6 False │ | ||
│ mime_type ('str',) 5 False │ | ||
│ text ('str',) 2 False │ | ||
│ uri ('str',) 4 False │ | ||
│ │ | ||
╰─────────────────────────────────────────────────────────────────╯ | ||
``` | ||
|
||
👉 Access the embedding playground in **clip-as-service** [doc](https://clip-as-service.jina.ai/playground/embedding), type sentence or image URL and see **live embedding**! | ||
|
||
### Ranking | ||
|
||
One can also rank cross-modal matches via `/rank` endpoint. | ||
First construct a *cross-modal* Document where the root contains an image and `.matches` contain sentences to rerank. | ||
|
||
```python | ||
from docarray import Document | ||
|
||
d = Document( | ||
uri='rerank.png', | ||
matches=[ | ||
Document(text=f'a photo of a {p}') | ||
for p in ( | ||
'control room', | ||
'lecture room', | ||
'conference room', | ||
'podium indoor', | ||
'television studio', | ||
) | ||
], | ||
) | ||
``` | ||
|
||
Then send the request via `/rank` endpoint: | ||
|
||
```python | ||
f = Flow().add( | ||
uses='jinahub+docker://CLIPTorchEncoder', | ||
) | ||
with f: | ||
r = f.post(on='/rank', inputs=da) | ||
print(r['@m', ['text', 'scores__clip_score__value']]) | ||
``` | ||
|
||
Finally, in the return you can observe the matches are re-ranked according to `.scores['clip_score']`: | ||
|
||
```bash | ||
[['a photo of a television studio', 'a photo of a conference room', 'a photo of a lecture room', 'a photo of a control room', 'a photo of a podium indoor'], | ||
[0.9920725226402283, 0.006038925610482693, 0.0009973491542041302, 0.00078492151806131, 0.00010626466246321797]] | ||
``` | ||
|
||
One can also construct `text-to-image` rerank as below: | ||
|
||
```python | ||
from docarray import Document | ||
|
||
d = Document( | ||
text='a photo of conference room', | ||
matches=[ | ||
Document(uri='https://picsum.photos/300'), | ||
Document(uri='https://picsum.photos/id/331/50'), | ||
Document(uri='https://clip-as-service.jina.ai/_static/favicon.png'), | ||
], | ||
) | ||
``` | ||
|
||
👉 Access the ranking playground in **clip-as-service** [doc](https://clip-as-service.jina.ai/playground/reasoning/). Just input the reasoning texts as prompts, the server will rank the prompts and return sorted prompts with scores. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,179 @@ | ||
# CLIPTorchEncoder | ||
|
||
**CLIPTorchEncoder** is the executor implemented in [clip-as-service](https://github.com/jina-ai/clip-as-service). | ||
It serves OpenAI released [CLIP](https://github.com/openai/CLIP) models with PyTorch runtime. | ||
The introduction of the CLIP model [can be found here](https://openai.com/blog/clip/). | ||
|
||
- 🔀 **Automatic**: Auto-detect image and text documents depending on their content. | ||
- ⚡ **Efficiency**: Faster CLIP model inference on CPU and GPU via leveraging the best practices. | ||
- 📈 **Observability**: Monitoring the serving via Prometheus and Grafana (see [Usage Guide](https://docs.jina.ai/how-to/monitoring/#deploying-locally)). | ||
|
||
With advances of ONNX runtime, you can use `CLIPOnnxEncoder` (see [link](https://hub.jina.ai/executor/2a7auwg2)) instead to achieve **3x** model inference speed up. | ||
|
||
## Model support | ||
|
||
Open AI has released **9 models** so far. `ViT-B/32` is used as default model. Please also note that different models give **the different sizes of output dimensions**. | ||
|
||
| Model | PyTorch | Output dimension | | ||
|----------------|---------|------------------| | ||
| RN50 | ✅ | 1024 | | ||
| RN101 | ✅ | 512 | | ||
| RN50x4 | ✅ | 640 | | ||
| RN50x16 | ✅ | 768 | | ||
| RN50x64 | ✅ | 1024 | | ||
| ViT-B/32 | ✅ | 512 | | ||
| ViT-B/16 | ✅ | 512 | | ||
| ViT-L/14 | ✅ | 768 | | ||
| ViT-L/14@336px | ✅ | 768 | | ||
|
||
## Usage | ||
|
||
### Use in Jina Flow | ||
|
||
- **via Docker image (recommended)** | ||
|
||
```python | ||
from jina import Flow | ||
from docarray import Document | ||
import numpy as np | ||
|
||
f = Flow().add( | ||
uses='jinahub+docker://CLIPTorchEncoder', | ||
) | ||
``` | ||
|
||
- **via source code** | ||
|
||
```python | ||
from jina import Flow | ||
from docarray import Document | ||
import numpy as np | ||
|
||
f = Flow().add( | ||
uses='jinahub://CLIPTorchEncoder', | ||
) | ||
``` | ||
|
||
You can set the following parameters via `with`: | ||
|
||
| Parameter | Description | | ||
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------| | ||
| `name` | Model weights, default is `ViT-B/32`. Support all OpenAI released pretrained models. | | ||
| `num_worker_preprocess` | The number of CPU workers for image & text prerpocessing, default 4. | | ||
| `minibatch_size` | The size of a minibatch for CPU preprocessing and GPU encoding, default 32. Reduce the size of it if you encounter OOM on GPU. | | ||
| `device` | `cuda` or `cpu`. Default is `None` means auto-detect. | | ||
| `jit` | If to enable Torchscript JIT, default is `False`. | | ||
|
||
### Encoding | ||
|
||
Encoding here means getting the fixed-length vector representation of a sentence or image. | ||
|
||
```python | ||
from jina import Flow | ||
from docarray import Document, DocumentArray | ||
|
||
da = DocumentArray( | ||
[ | ||
Document(text='she smiled, with pain'), | ||
Document(uri='apple.png'), | ||
Document(uri='apple.png').load_uri_to_image_tensor(), | ||
Document(blob=open('apple.png', 'rb').read()), | ||
Document(uri='https://clip-as-service.jina.ai/_static/favicon.png'), | ||
Document( | ||
uri='' | ||
), | ||
] | ||
) | ||
|
||
f = Flow().add( | ||
uses='jinahub+docker://CLIPTorchEncoder', | ||
) | ||
with f: | ||
f.post(on='/', inputs=da) | ||
da.summary() | ||
``` | ||
|
||
From the output, you will see all the text and image docs have `embedding` attached. | ||
|
||
```text | ||
╭──────────────────────────── Documents Summary ─────────────────────────────╮ | ||
│ │ | ||
│ Length 6 │ | ||
│ Homogenous Documents False │ | ||
│ 4 Documents have attributes ('id', 'mime_type', 'uri', 'embedding') │ | ||
│ 1 Document has attributes ('id', 'mime_type', 'text', 'embedding') │ | ||
│ 1 Document has attributes ('id', 'embedding') │ | ||
│ │ | ||
╰────────────────────────────────────────────────────────────────────────────╯ | ||
╭────────────────────── Attributes Summary ───────────────────────╮ | ||
│ │ | ||
│ Attribute Data type #Unique values Has empty value │ | ||
│ ───────────────────────────────────────────────────────────── │ | ||
│ embedding ('ndarray',) 6 False │ | ||
│ id ('str',) 6 False │ | ||
│ mime_type ('str',) 5 False │ | ||
│ text ('str',) 2 False │ | ||
│ uri ('str',) 4 False │ | ||
│ │ | ||
╰─────────────────────────────────────────────────────────────────╯ | ||
``` | ||
|
||
👉 Access the embedding playground in **clip-as-service** [doc](https://clip-as-service.jina.ai/playground/embedding), type sentence or image URL and see **live embedding**! | ||
|
||
### Ranking | ||
|
||
One can also rank cross-modal matches via `/rank` endpoint. | ||
First construct a *cross-modal* Document where the root contains an image and `.matches` contain sentences to rerank. | ||
|
||
```python | ||
from docarray import Document | ||
|
||
d = Document( | ||
uri='rerank.png', | ||
matches=[ | ||
Document(text=f'a photo of a {p}') | ||
for p in ( | ||
'control room', | ||
'lecture room', | ||
'conference room', | ||
'podium indoor', | ||
'television studio', | ||
) | ||
], | ||
) | ||
``` | ||
|
||
Then send the request via `/rank` endpoint: | ||
|
||
```python | ||
f = Flow().add( | ||
uses='jinahub+docker://CLIPTorchEncoder', | ||
) | ||
with f: | ||
r = f.post(on='/rank', inputs=da) | ||
print(r['@m', ['text', 'scores__clip_score__value']]) | ||
``` | ||
|
||
Finally, you can observe the matches are re-ranked based on `.scores['clip_score']`: | ||
|
||
```bash | ||
[['a photo of a television studio', 'a photo of a conference room', 'a photo of a lecture room', 'a photo of a control room', 'a photo of a podium indoor'], | ||
[0.9920725226402283, 0.006038925610482693, 0.0009973491542041302, 0.00078492151806131, 0.00010626466246321797]] | ||
``` | ||
|
||
One can also construct `text-to-image` rerank as below: | ||
|
||
```python | ||
from docarray import Document | ||
|
||
d = Document( | ||
text='a photo of conference room', | ||
matches=[ | ||
Document(uri='https://picsum.photos/300'), | ||
Document(uri='https://picsum.photos/id/331/50'), | ||
Document(uri='https://clip-as-service.jina.ai/_static/favicon.png'), | ||
], | ||
) | ||
``` | ||
|
||
👉 Access the ranking playground in **clip-as-service** [doc](https://clip-as-service.jina.ai/playground/reasoning/). Just input the reasoning texts as prompts, the server will rank the prompts and return sorted prompts with scores. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.