Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: add traversal paths #748

Merged
merged 11 commits into from
Jun 10, 2022
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 12 additions & 3 deletions client/clip_client/client.py
Original file line number Diff line number Diff line change
Expand Up @@ -132,7 +132,7 @@ def _gather_result(self, r):

@property
def _unboxed_result(self):
if self._results.embeddings is None:
if self._return_plain and self._results.embeddings is None:
raise ValueError(
'empty embedding returned from the server. '
'This often due to a mis-config of the server, '
Expand Down Expand Up @@ -167,6 +167,9 @@ def _iter_doc(self, content) -> Generator['Document', None, None]:
yield c
elif c.tensor is not None:
numb3r3 marked this conversation as resolved.
Show resolved Hide resolved
yield c
elif len(c.chunks) > 0 or len(c.matches) > 0:
self._return_plain = False
yield c
else:
raise TypeError(f'unsupported input type {c!r} {c.content_type}')
else:
Expand All @@ -184,12 +187,18 @@ def _iter_doc(self, content) -> Generator['Document', None, None]:
)

def _get_post_payload(self, content, kwargs):
return dict(
parameters = {}
if 'traversal_paths' in kwargs:
parameters['traversal_paths'] = kwargs['traversal_paths']

payload = dict(
on='/',
inputs=self._iter_doc(content),
request_size=kwargs.get('batch_size', 8),
request_size=kwargs.get('batch_size', 32),
parameters=parameters,
total_docs=len(content) if hasattr(content, '__len__') else None,
)
return payload
numb3r3 marked this conversation as resolved.
Show resolved Hide resolved

def profile(self, content: Optional[str] = '') -> Dict[str, float]:
"""Profiling a single query's roundtrip including network and computation latency. Results is summarized in a table.
Expand Down
50 changes: 32 additions & 18 deletions server/clip_server/executors/clip_hg.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,9 +22,9 @@ def __init__(
use_default_preprocessing: bool = True,
max_length: int = 77,
device: str = 'cpu',
overwrite_embeddings: bool = False,
num_worker_preprocess: int = 4,
minibatch_size: int = 32,
traversal_paths: str = '@r',
*args,
**kwargs,
):
Expand Down Expand Up @@ -52,12 +52,15 @@ def __init__(
:param num_worker_preprocess: Number of cpu processes used in preprocessing step.
:param minibatch_size: Default batch size for encoding, used if the
batch size is not passed as a parameter with the request.
:param traversal_paths: Default traversal paths for encoding, used if
the traversal path is not passed as a parameter with the request.
"""
super().__init__(*args, **kwargs)
self._minibatch_size = minibatch_size

self._use_default_preprocessing = use_default_preprocessing
self._max_length = max_length
self._traversal_paths = traversal_paths

# self.device = device
if not device:
Expand Down Expand Up @@ -110,32 +113,36 @@ def _preproc_images(self, docs: 'DocumentArray'):
name='preprocess_images_seconds',
documentation='images preprocess time in seconds',
):
tensors_batch = []
if self._use_default_preprocessing:
tensors_batch = []

for d in docs:
content = d.content
for d in docs:
content = d.content

if d.blob:
d.convert_blob_to_image_tensor()
elif d.uri:
d.load_uri_to_image_tensor()
if d.blob:
d.convert_blob_to_image_tensor()
elif d.tensor is None and d.uri:
# in case user uses HTTP protocol and send data via curl not using .blob (base64), but in .uri
d.load_uri_to_image_tensor()

tensors_batch.append(d.tensor)
tensors_batch.append(d.tensor)

# recover content
d.content = content
# recover content
d.content = content

if self._use_default_preprocessing:
batch_data = self._vision_preprocessor(
images=tensors_batch,
return_tensors='pt',
)
batch_data = {k: v.to(self._device) for k, v in batch_data.items()}
batch_data = {
k: v.type(torch.float32).to(self._device)
for k, v in batch_data.items()
}

else:
batch_data = {
'pixel_values': torch.tensor(
tensors_batch, dtype=torch.float32, device=self._device
docs.tensors, dtype=torch.float32, device=self._device
)
}

Expand Down Expand Up @@ -163,7 +170,7 @@ async def rank(self, docs: 'DocumentArray', parameters: Dict, **kwargs):
set_rank(docs)

@requests
async def encode(self, docs: DocumentArray, **kwargs):
async def encode(self, docs: DocumentArray, parameters: Dict = {}, **kwargs):
"""
Encode all documents with `text` or image content using the corresponding CLIP
encoder. Store the embeddings in the `embedding` attribute.
Expand All @@ -181,18 +188,25 @@ async def encode(self, docs: DocumentArray, **kwargs):
the CLIP model was trained on images of the size ``224 x 224``, and that
they are of the shape ``[3, H, W]`` with ``dtype=float32``. They should
also be normalized (values between 0 and 1).
:param parameters: A dictionary that contains parameters to control encoding.
The accepted keys are ``traversal_paths`` and ``minibatch_size`` - in their
absence their corresponding default values are used.
"""

traversal_paths = parameters.get('traversal_paths', self._traversal_paths)
minibatch_size = parameters.get('minibatch_size', self._minibatch_size)

_img_da = DocumentArray()
_txt_da = DocumentArray()
for d in docs:
for d in docs[traversal_paths]:
split_img_txt_da(d, _img_da, _txt_da)

with torch.inference_mode():
# for image
if _img_da:
for minibatch, batch_data in _img_da.map_batch(
self._preproc_images,
batch_size=self._minibatch_size,
batch_size=minibatch_size,
pool=self._pool,
):
with self.monitor(
Expand All @@ -210,7 +224,7 @@ async def encode(self, docs: DocumentArray, **kwargs):
if _txt_da:
for minibatch, batch_data in _txt_da.map_batch(
self._preproc_texts,
batch_size=self._minibatch_size,
batch_size=minibatch_size,
pool=self._pool,
):
with self.monitor(
Expand Down
51 changes: 19 additions & 32 deletions server/clip_server/executors/clip_onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,16 +21,18 @@ def __init__(
name: str = 'ViT-B/32',
device: Optional[str] = None,
num_worker_preprocess: int = 4,
minibatch_size: int = 16,
minibatch_size: int = 32,
traversal_paths: str = '@r',
**kwargs,
):
super().__init__(**kwargs)

self._minibatch_size = minibatch_size
self._traversal_paths = traversal_paths

self._preprocess_tensor = clip._transform_ndarray(clip.MODEL_SIZE[name])
self._pool = ThreadPool(processes=num_worker_preprocess)

self._minibatch_size = minibatch_size

self._model = CLIPOnnxModel(name)

import torch
Expand Down Expand Up @@ -59,7 +61,7 @@ def __init__(
and hasattr(self.runtime_args, 'replicas')
):
replicas = getattr(self.runtime_args, 'replicas', 1)
num_threads = max(1, torch.get_num_threads() // replicas)
num_threads = max(1, torch.get_num_threads() * 2 // replicas)
numb3r3 marked this conversation as resolved.
Show resolved Hide resolved
if num_threads < 2:
warnings.warn(
f'Too many replicas ({replicas}) vs too few threads {num_threads} may result in '
Expand Down Expand Up @@ -98,55 +100,40 @@ async def rank(self, docs: 'DocumentArray', parameters: Dict, **kwargs):
set_rank(docs)

@requests
async def encode(self, docs: 'DocumentArray', **kwargs):
async def encode(self, docs: 'DocumentArray', parameters: Dict = {}, **kwargs):

traversal_paths = parameters.get('traversal_paths', self._traversal_paths)
minibatch_size = parameters.get('minibatch_size', self._minibatch_size)

_img_da = DocumentArray()
_txt_da = DocumentArray()
for d in docs:
for d in docs[traversal_paths]:
split_img_txt_da(d, _img_da, _txt_da)

# for image
if _img_da:
for minibatch, _contents in _img_da.map_batch(
for minibatch, batch_data in _img_da.map_batch(
self._preproc_images,
batch_size=self._minibatch_size,
batch_size=minibatch_size,
pool=self._pool,
):
with self.monitor(
name='encode_images_seconds',
documentation='images encode time in seconds',
):
minibatch.embeddings = self._model.encode_image(minibatch.tensors)

# recover original content
try:
_ = iter(_contents)
for _d, _ct in zip(minibatch, _contents):
_d.content = _ct
except TypeError:
pass
minibatch.embeddings = self._model.encode_image(batch_data)

# for text
# for text
if _txt_da:
for minibatch, _contents in _txt_da.map_batch(
for minibatch, batch_data in _txt_da.map_batch(
self._preproc_texts,
batch_size=self._minibatch_size,
batch_size=minibatch_size,
pool=self._pool,
):
with self.monitor(
name='encode_texts_seconds',
documentation='texts encode time in seconds',
):
minibatch.embeddings = self._model.encode_text(minibatch.tensors)

# recover original content
try:
_ = iter(_contents)
for _d, _ct in zip(minibatch, _contents):
_d.content = _ct
except TypeError:
pass

# drop tensors
docs.tensors = None
minibatch.embeddings = self._model.encode_text(batch_data)

return docs
40 changes: 12 additions & 28 deletions server/clip_server/executors/clip_tensorrt.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ def __init__(
name: str = 'ViT-B/32',
device: str = 'cuda',
num_worker_preprocess: int = 4,
minibatch_size: int = 64,
minibatch_size: int = 32,
**kwargs,
):
super().__init__(**kwargs)
Expand Down Expand Up @@ -71,67 +71,51 @@ async def rank(self, docs: 'DocumentArray', parameters: Dict, **kwargs):
set_rank(docs)

@requests
async def encode(self, docs: 'DocumentArray', **kwargs):
async def encode(self, docs: 'DocumentArray', parameters: Dict = {}, **kwargs):
traversal_paths = parameters.get('traversal_paths', self._traversal_paths)
minibatch_size = parameters.get('minibatch_size', self._minibatch_size)

_img_da = DocumentArray()
_txt_da = DocumentArray()
for d in docs:
for d in docs[traversal_paths]:
split_img_txt_da(d, _img_da, _txt_da)

# for image
if _img_da:
for minibatch, _contents in _img_da.map_batch(
for minibatch, batch_data in _img_da.map_batch(
self._preproc_images,
batch_size=self._minibatch_size,
batch_size=minibatch_size,
pool=self._pool,
):
with self.monitor(
name='encode_images_seconds',
documentation='images encode time in seconds',
):
minibatch.embeddings = (
self._model.encode_image(minibatch.tensors)
self._model.encode_image(batch_data)
.detach()
.cpu()
.numpy()
.astype(np.float32)
)

# recover original content
try:
_ = iter(_contents)
for _d, _ct in zip(minibatch, _contents):
_d.content = _ct
except TypeError:
pass

# for text
if _txt_da:
for minibatch, _contents in _txt_da.map_batch(
for minibatch, batch_data in _txt_da.map_batch(
self._preproc_texts,
batch_size=self._minibatch_size,
batch_size=minibatch_size,
pool=self._pool,
):
with self.monitor(
name='encode_texts_seconds',
documentation='texts encode time in seconds',
):
minibatch.embeddings = (
self._model.encode_text(minibatch.tensors)
self._model.encode_text(batch_data)
.detach()
.cpu()
.numpy()
.astype(np.float32)
)

# recover original content
try:
_ = iter(_contents)
for _d, _ct in zip(minibatch, _contents):
_d.content = _ct
except TypeError:
pass

# drop tensors
docs.tensors = None

return docs
Loading