Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: fp16 inference #790

Merged
merged 11 commits into from
Aug 2, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions LICENSE
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
Copyright 2020-2022 Jina AI Limited. All rights reserved.

The following two files are licensed under MIT License via https://github.com/openai/CLIP Copyright (c) 2021 OpenAI
server/clip_server/model/clip.py
The following two files are licensed under MIT License via https://github.com/mlfoundations/open_clip Copyright (c) 2021, OpenCLIP
server/clip_server/model/model.py
server/clip_server/model/simple_tokenizer.py


Expand Down
139 changes: 0 additions & 139 deletions server/clip_server/model/clip.py
Original file line number Diff line number Diff line change
@@ -1,11 +1,6 @@
# Originally from https://github.com/openai/CLIP. MIT License, Copyright (c) 2021 OpenAI

import io
import os
import hashlib
import shutil
import urllib
from typing import List

from PIL import Image
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
Expand All @@ -18,135 +13,6 @@
BICUBIC = Image.BICUBIC


_S3_BUCKET = 'https://clip-as-service.s3.us-east-2.amazonaws.com/models/torch/'
_MODELS = {
'RN50': ('RN50.pt', '9140964eaaf9f68c95aa8df6ca13777c'),
'RN101': ('RN101.pt', 'fa9d5f64ebf152bc56a18db245071014'),
'RN50x4': ('RN50x4.pt', '03830990bc768e82f7fb684cde7e5654'),
'RN50x16': ('RN50x16.pt', '83d63878a818c65d0fb417e5fab1e8fe'),
'RN50x64': ('RN50x64.pt', 'a6631a0de003c4075d286140fc6dd637'),
'ViT-B/32': ('ViT-B-32.pt', '3ba34e387b24dfe590eeb1ae6a8a122b'),
'ViT-B/16': ('ViT-B-16.pt', '44c3d804ecac03d9545ac1a3adbca3a6'),
'ViT-L/14': ('ViT-L-14.pt', '096db1af569b284eb76b3881534822d9'),
'ViT-L/14@336px': ('ViT-L-14-336px.pt', 'b311058cae50cb10fbfa2a44231c9473'),
}

MODEL_SIZE = {
'RN50': 224,
'RN101': 224,
'RN50x4': 288,
'RN50x16': 384,
'RN50x64': 448,
'ViT-B/32': 224,
'ViT-B/16': 224,
'ViT-L/14': 224,
'ViT-L/14@336px': 336,
}


def md5file(filename: str):
hash_md5 = hashlib.md5()
with open(filename, 'rb') as f:
for chunk in iter(lambda: f.read(4096), b""):
hash_md5.update(chunk)

return hash_md5.hexdigest()


def _download(
url: str,
target_folder: str,
md5sum: str = None,
with_resume: bool = True,
max_attempts: int = 3,
) -> str:
os.makedirs(target_folder, exist_ok=True)
filename = os.path.basename(url)

download_target = os.path.join(target_folder, filename)

if os.path.exists(download_target):
if not os.path.isfile(download_target):
raise FileExistsError(f'{download_target} exists and is not a regular file')

actual_md5sum = md5file(download_target)
if (not md5sum) or actual_md5sum == md5sum:
return download_target

from rich.progress import (
DownloadColumn,
Progress,
TextColumn,
TimeRemainingColumn,
TransferSpeedColumn,
)

progress = Progress(
TextColumn("[bold blue]{task.fields[filename]}", justify="right"),
"[progress.percentage]{task.percentage:>3.1f}%",
"•",
DownloadColumn(),
"•",
TransferSpeedColumn(),
"•",
TimeRemainingColumn(),
)

with progress:
task = progress.add_task('download', filename=url, start=False)

for _ in range(max_attempts):
tmp_file_path = download_target + '.part'
resume_byte_pos = (
os.path.getsize(tmp_file_path) if os.path.exists(tmp_file_path) else 0
)

try:
# resolve the 403 error by passing a valid user-agent
req = urllib.request.Request(url, headers={'User-Agent': 'Mozilla/5.0'})
total_bytes = int(
urllib.request.urlopen(req).info().get('Content-Length', -1)
)
mode = 'ab' if (with_resume and resume_byte_pos) else 'wb'

with open(tmp_file_path, mode) as output:
progress.update(task, total=total_bytes)
progress.start_task(task)

if resume_byte_pos and with_resume:
progress.update(task, advance=resume_byte_pos)
req.headers['Range'] = f'bytes={resume_byte_pos}-'

with urllib.request.urlopen(req) as source:
while True:
buffer = source.read(8192)
if not buffer:
break

output.write(buffer)
progress.update(task, advance=len(buffer))

actual_md5 = md5file(tmp_file_path)
if (md5sum and actual_md5 == md5sum) or (not md5sum):
shutil.move(tmp_file_path, download_target)
return download_target
else:
os.remove(tmp_file_path)
raise RuntimeError(
f'MD5 mismatch: expected {md5sum}, got {actual_md5}'
)

except Exception as ex:
progress.console.print(
f'Failed to download {url} with {ex!r} at the {_}th attempt'
)
progress.reset(task)

raise RuntimeError(
f'Failed to download {url} within retry limit {max_attempts}'
)


def _convert_image_to_rgb(image):
return image.convert('RGB')

Expand Down Expand Up @@ -183,8 +49,3 @@ def _transform_ndarray(n_px):
),
]
)


def available_models() -> List[str]:
'''Returns the names of available CLIP models'''
return list(_MODELS.keys())
1 change: 0 additions & 1 deletion server/clip_server/model/mclip_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,6 @@
import open_clip

from clip_server.model.clip_model import CLIPModel
from clip_server.model.pretrained_models import _VISUAL_MODEL_IMAGE_SIZE

corresponding_clip_models = {
'M-CLIP/XLM-Roberta-Large-Vit-B-32': ('ViT-B-32', 'openai'),
Expand Down
Loading