Skip to content
This repository has been archived by the owner on Feb 18, 2024. It is now read-only.

Refactored JSON read to split IO-bounded from CPU-bounded tasks #706

Merged
merged 1 commit into from
Dec 24, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
46 changes: 46 additions & 0 deletions examples/json_read.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
use std::fs::File;
use std::io::BufReader;

use arrow2::error::Result;
use arrow2::io::json::read;
use arrow2::record_batch::RecordBatch;

fn read_path(path: &str, projection: Option<Vec<&str>>) -> Result<RecordBatch> {
// Example of reading a JSON file.
let mut reader = BufReader::new(File::open(path)?);

let fields = read::infer_and_reset(&mut reader, None)?;

let fields = if let Some(projection) = projection {
fields
.into_iter()
.filter(|field| projection.contains(&field.name().as_ref()))
.collect()
} else {
fields
};

// at most 1024 rows. This container can be re-used across batches.
let mut rows = vec![String::default(); 1024];

// Reads up to 1024 rows.
// this is IO-intensive and performs minimal CPU work. In particular,
// no deserialization is performed.
let read = read::read_rows(&mut reader, &mut rows)?;
let rows = &rows[..read];

// deserialize `rows` into a `RecordBatch`. This is CPU-intensive, has no IO,
// and can be performed on a different thread pool via a channel.
read::deserialize(&rows, fields)
}

fn main() -> Result<()> {
use std::env;
let args: Vec<String> = env::args().collect();

let file_path = &args[1];

let batch = read_path(file_path, None)?;
println!("{:#?}", batch);
Ok(())
}
1 change: 1 addition & 0 deletions guide/src/SUMMARY.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,3 +18,4 @@
- [Write Arrow](./io/ipc_write.md)
- [Read Avro](./io/avro_read.md)
- [Write Avro](./io/avro_write.md)
- [Read JSON](./io/json_read.md)
10 changes: 10 additions & 0 deletions guide/src/io/json_read.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
# JSON read

When compiled with feature `io_json`, you can use this crate to read JSON files.

```rust
{{#include ../../../examples/json_read.rs}}
```

Note how deserialization can be performed on a separate thread pool to avoid
blocking the runtime (see also [here](https://ryhl.io/blog/async-what-is-blocking/)).
3 changes: 1 addition & 2 deletions src/io/json/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -2,10 +2,9 @@
#![forbid(unsafe_code)]
//! Convert data between the Arrow memory format and JSON line-delimited records.
mod read;
pub mod read;
mod write;

pub use read::*;
pub use write::*;

use crate::error::ArrowError;
Expand Down
154 changes: 84 additions & 70 deletions src/io/json/read/deserialize.rs
Original file line number Diff line number Diff line change
@@ -1,20 +1,4 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.

use std::borrow::Borrow;
use std::hash::Hasher;
use std::{collections::hash_map::DefaultHasher, sync::Arc};

Expand All @@ -23,6 +7,9 @@ use indexmap::map::IndexMap as HashMap;
use num_traits::NumCast;
use serde_json::Value;

use crate::datatypes::{Field, Schema};
use crate::error::ArrowError;
use crate::record_batch::RecordBatch;
use crate::{
array::*,
bitmap::MutableBitmap,
Expand Down Expand Up @@ -73,42 +60,48 @@ fn build_extract(data_type: &DataType) -> Extract {
}
}

fn read_int<T: NativeType + NumCast>(rows: &[&Value], data_type: DataType) -> PrimitiveArray<T> {
let iter = rows.iter().map(|row| match row {
fn deserialize_boolean<A: Borrow<Value>>(rows: &[A]) -> BooleanArray {
let iter = rows.iter().map(|row| match row.borrow() {
Value::Bool(v) => Some(v),
_ => None,
});
BooleanArray::from_trusted_len_iter(iter)
}

fn deserialize_int<T: NativeType + NumCast, A: Borrow<Value>>(
rows: &[A],
data_type: DataType,
) -> PrimitiveArray<T> {
let iter = rows.iter().map(|row| match row.borrow() {
Value::Number(number) => number.as_i64().and_then(num_traits::cast::<i64, T>),
Value::Bool(number) => num_traits::cast::<i32, T>(*number as i32),
_ => None,
});
PrimitiveArray::from_trusted_len_iter(iter).to(data_type)
}

fn read_float<T: NativeType + NumCast>(rows: &[&Value], data_type: DataType) -> PrimitiveArray<T> {
let iter = rows.iter().map(|row| match row {
fn deserialize_float<T: NativeType + NumCast, A: Borrow<Value>>(
rows: &[A],
data_type: DataType,
) -> PrimitiveArray<T> {
let iter = rows.iter().map(|row| match row.borrow() {
Value::Number(number) => number.as_f64().and_then(num_traits::cast::<f64, T>),
Value::Bool(number) => num_traits::cast::<i32, T>(*number as i32),
_ => None,
});
PrimitiveArray::from_trusted_len_iter(iter).to(data_type)
}

fn read_binary<O: Offset>(rows: &[&Value]) -> BinaryArray<O> {
let iter = rows.iter().map(|row| match row {
fn deserialize_binary<O: Offset, A: Borrow<Value>>(rows: &[A]) -> BinaryArray<O> {
let iter = rows.iter().map(|row| match row.borrow() {
Value::String(v) => Some(v.as_bytes()),
_ => None,
});
BinaryArray::from_trusted_len_iter(iter)
}

fn read_boolean(rows: &[&Value]) -> BooleanArray {
let iter = rows.iter().map(|row| match row {
Value::Bool(v) => Some(v),
_ => None,
});
BooleanArray::from_trusted_len_iter(iter)
}

fn read_utf8<O: Offset>(rows: &[&Value]) -> Utf8Array<O> {
let iter = rows.iter().map(|row| match row {
fn deserialize_utf8<O: Offset, A: Borrow<Value>>(rows: &[A]) -> Utf8Array<O> {
let iter = rows.iter().map(|row| match row.borrow() {
Value::String(v) => Some(v.clone()),
Value::Number(v) => Some(v.to_string()),
Value::Bool(v) => Some(v.to_string()),
Expand All @@ -117,15 +110,15 @@ fn read_utf8<O: Offset>(rows: &[&Value]) -> Utf8Array<O> {
Utf8Array::<O>::from_trusted_len_iter(iter)
}

fn read_list<O: Offset>(rows: &[&Value], data_type: DataType) -> ListArray<O> {
fn deserialize_list<O: Offset, A: Borrow<Value>>(rows: &[A], data_type: DataType) -> ListArray<O> {
let child = ListArray::<O>::get_child_type(&data_type);

let mut validity = MutableBitmap::with_capacity(rows.len());
let mut inner = Vec::<&Value>::with_capacity(rows.len());
let mut offsets = Vec::<O>::with_capacity(rows.len() + 1);
let mut inner = vec![];
offsets.push(O::zero());
rows.iter().fold(O::zero(), |mut length, row| {
match row {
match row.borrow() {
Value::Array(value) => {
inner.extend(value.iter());
validity.push(true);
Expand All @@ -142,26 +135,21 @@ fn read_list<O: Offset>(rows: &[&Value], data_type: DataType) -> ListArray<O> {
}
});

let values = read(&inner, child.clone());
let values = _deserialize(&inner, child.clone());

ListArray::<O>::from_data(data_type, offsets.into(), values, validity.into())
}

fn read_struct(rows: &[&Value], data_type: DataType) -> StructArray {
fn deserialize_struct<A: Borrow<Value>>(rows: &[A], data_type: DataType) -> StructArray {
let fields = StructArray::get_fields(&data_type);

let mut values = fields
.iter()
.map(|f| {
(
f.name(),
(f.data_type(), Vec::<&Value>::with_capacity(rows.len())),
)
})
.map(|f| (f.name(), (f.data_type(), vec![])))
.collect::<HashMap<_, _>>();

rows.iter().for_each(|row| {
match row {
match row.borrow() {
Value::Object(value) => {
values
.iter_mut()
Expand All @@ -177,23 +165,26 @@ fn read_struct(rows: &[&Value], data_type: DataType) -> StructArray {

let values = values
.into_iter()
.map(|(_, (data_type, values))| read(&values, data_type.clone()))
.map(|(_, (data_type, values))| _deserialize(&values, data_type.clone()))
.collect::<Vec<_>>();

StructArray::from_data(data_type, values, None)
}

fn read_dictionary<K: DictionaryKey>(rows: &[&Value], data_type: DataType) -> DictionaryArray<K> {
fn deserialize_dictionary<K: DictionaryKey, A: Borrow<Value>>(
rows: &[A],
data_type: DataType,
) -> DictionaryArray<K> {
let child = DictionaryArray::<K>::get_child(&data_type);

let mut map = HashedMap::<u64, K>::default();

let extractor = build_extract(child);

let mut inner = Vec::<&Value>::with_capacity(rows.len());
let mut inner = vec![];
let keys = rows
.iter()
.map(|x| extractor(x))
.map(|x| extractor(x.borrow()))
.map(|item| match item {
Some((hash, v)) => match map.get(&hash) {
Some(key) => Some(*key),
Expand All @@ -209,45 +200,47 @@ fn read_dictionary<K: DictionaryKey>(rows: &[&Value], data_type: DataType) -> Di
})
.collect::<PrimitiveArray<K>>();

let values = read(&inner, child.clone());
let values = _deserialize(&inner, child.clone());
DictionaryArray::<K>::from_data(keys, values)
}

pub fn read(rows: &[&Value], data_type: DataType) -> Arc<dyn Array> {
fn _deserialize<A: Borrow<Value>>(rows: &[A], data_type: DataType) -> Arc<dyn Array> {
match &data_type {
DataType::Null => Arc::new(NullArray::from_data(data_type, rows.len())),
DataType::Boolean => Arc::new(read_boolean(rows)),
DataType::Int8 => Arc::new(read_int::<i8>(rows, data_type)),
DataType::Int16 => Arc::new(read_int::<i16>(rows, data_type)),
DataType::Boolean => Arc::new(deserialize_boolean(rows)),
DataType::Int8 => Arc::new(deserialize_int::<i8, _>(rows, data_type)),
DataType::Int16 => Arc::new(deserialize_int::<i16, _>(rows, data_type)),
DataType::Int32
| DataType::Date32
| DataType::Time32(_)
| DataType::Interval(IntervalUnit::YearMonth) => Arc::new(read_int::<i32>(rows, data_type)),
| DataType::Interval(IntervalUnit::YearMonth) => {
Arc::new(deserialize_int::<i32, _>(rows, data_type))
}
DataType::Interval(IntervalUnit::DayTime) => {
unimplemented!("There is no natural representation of DayTime in JSON.")
}
DataType::Int64
| DataType::Date64
| DataType::Time64(_)
| DataType::Timestamp(_, _)
| DataType::Duration(_) => Arc::new(read_int::<i64>(rows, data_type)),
DataType::UInt8 => Arc::new(read_int::<u8>(rows, data_type)),
DataType::UInt16 => Arc::new(read_int::<u16>(rows, data_type)),
DataType::UInt32 => Arc::new(read_int::<u32>(rows, data_type)),
DataType::UInt64 => Arc::new(read_int::<u64>(rows, data_type)),
| DataType::Duration(_) => Arc::new(deserialize_int::<i64, _>(rows, data_type)),
DataType::UInt8 => Arc::new(deserialize_int::<u8, _>(rows, data_type)),
DataType::UInt16 => Arc::new(deserialize_int::<u16, _>(rows, data_type)),
DataType::UInt32 => Arc::new(deserialize_int::<u32, _>(rows, data_type)),
DataType::UInt64 => Arc::new(deserialize_int::<u64, _>(rows, data_type)),
DataType::Float16 => unreachable!(),
DataType::Float32 => Arc::new(read_float::<f32>(rows, data_type)),
DataType::Float64 => Arc::new(read_float::<f64>(rows, data_type)),
DataType::Utf8 => Arc::new(read_utf8::<i32>(rows)),
DataType::LargeUtf8 => Arc::new(read_utf8::<i64>(rows)),
DataType::List(_) => Arc::new(read_list::<i32>(rows, data_type)),
DataType::LargeList(_) => Arc::new(read_list::<i64>(rows, data_type)),
DataType::Binary => Arc::new(read_binary::<i32>(rows)),
DataType::LargeBinary => Arc::new(read_binary::<i64>(rows)),
DataType::Struct(_) => Arc::new(read_struct(rows, data_type)),
DataType::Float32 => Arc::new(deserialize_float::<f32, _>(rows, data_type)),
DataType::Float64 => Arc::new(deserialize_float::<f64, _>(rows, data_type)),
DataType::Utf8 => Arc::new(deserialize_utf8::<i32, _>(rows)),
DataType::LargeUtf8 => Arc::new(deserialize_utf8::<i64, _>(rows)),
DataType::List(_) => Arc::new(deserialize_list::<i32, _>(rows, data_type)),
DataType::LargeList(_) => Arc::new(deserialize_list::<i64, _>(rows, data_type)),
DataType::Binary => Arc::new(deserialize_binary::<i32, _>(rows)),
DataType::LargeBinary => Arc::new(deserialize_binary::<i64, _>(rows)),
DataType::Struct(_) => Arc::new(deserialize_struct(rows, data_type)),
DataType::Dictionary(key_type, _) => {
match_integer_type!(key_type, |$T| {
Arc::new(read_dictionary::<$T>(rows, data_type))
Arc::new(deserialize_dictionary::<$T, _>(rows, data_type))
})
}
_ => todo!(),
Expand All @@ -258,3 +251,24 @@ pub fn read(rows: &[&Value], data_type: DataType) -> Arc<dyn Array> {
*/
}
}

/// Deserializes `rows` into a [`RecordBatch`] according to `fields`.
/// This is CPU-bounded.
pub fn deserialize<A: AsRef<str>>(
rows: &[A],
fields: Vec<Field>,
) -> Result<RecordBatch, ArrowError> {
let data_type = DataType::Struct(fields);

// convert rows to `Value`
let rows = rows
.iter()
.map(|row| {
let row: Value = serde_json::from_str(row.as_ref()).map_err(ArrowError::from)?;
Ok(row)
})
.collect::<Result<Vec<_>, ArrowError>>()?;

let (fields, columns, _) = deserialize_struct(&rows, data_type).into_data();
RecordBatch::try_new(Arc::new(Schema::new(fields)), columns)
}
Loading