Skip to content

Commit

Permalink
Updated documentation
Browse files Browse the repository at this point in the history
  • Loading branch information
vruusmann committed Jul 22, 2023
1 parent 346b481 commit a67b795
Showing 1 changed file with 23 additions and 13 deletions.
36 changes: 23 additions & 13 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,20 +5,30 @@ Java library and command-line application for converting [H2O.ai](https://www.h2

# Features #

* Supported MOJO types:
* [`DrfMojoModel`](https://docs.h2o.ai/h2o/latest-stable/h2o-genmodel/javadoc/hex/genmodel/algos/drf/DrfMojoModel.html)
* [`GbmMojoModel`](https://docs.h2o.ai/h2o/latest-stable/h2o-genmodel/javadoc/hex/genmodel/algos/gbm/GbmMojoModel.html)
* [`GlmMojoModel`](https://docs.h2o.ai/h2o/latest-stable/h2o-genmodel/javadoc/hex/genmodel/algos/glm/GlmMojoModel.html)
* [`GlmMultinomialMojoModel`](https://docs.h2o.ai/h2o/latest-stable/h2o-genmodel/javadoc/hex/genmodel/algos/glm/GlmMultinomialMojoModel.html)
* [`GlmOrdinalMojoModel`](https://docs.h2o.ai/h2o/latest-stable/h2o-genmodel/javadoc/hex/genmodel/algos/glm/GlmOrdinalMojoModel.html)
* [`IsolationForestMojoModel`](https://docs.h2o.ai/h2o/latest-stable/h2o-genmodel/javadoc/hex/genmodel/algos/isofor/IsolationForestMojoModel.html)
* [`StackedEnsembleMojoModel`](https://docs.h2o.ai/h2o/latest-stable/h2o-genmodel/javadoc/hex/genmodel/algos/ensemble/StackedEnsembleMojoModel.html)
* `XGBoostJavaMojoModel`
* `XGBoostNativeMojoModel`
### Supported MOJO types

* Supervised algorithms:
* Automated Machine Learning (AutoML)
* Distributed Random Forest (DRF):
* [`DrfMojoModel`](https://docs.h2o.ai/h2o/latest-stable/h2o-genmodel/javadoc/hex/genmodel/algos/drf/DrfMojoModel.html)
* Gradient Boosting Machine (GBM):
* [`GbmMojoModel`](https://docs.h2o.ai/h2o/latest-stable/h2o-genmodel/javadoc/hex/genmodel/algos/gbm/GbmMojoModel.html)
* Generalized Linear Model (GLM):
* [`GlmMojoModel`](https://docs.h2o.ai/h2o/latest-stable/h2o-genmodel/javadoc/hex/genmodel/algos/glm/GlmMojoModel.html)
* [`GlmMultinomialMojoModel`](https://docs.h2o.ai/h2o/latest-stable/h2o-genmodel/javadoc/hex/genmodel/algos/glm/GlmMultinomialMojoModel.html)
* [`GlmOrdinalMojoModel`](https://docs.h2o.ai/h2o/latest-stable/h2o-genmodel/javadoc/hex/genmodel/algos/glm/GlmOrdinalMojoModel.html)
* Stacked Ensembles:
* [`StackedEnsembleMojoModel`](https://docs.h2o.ai/h2o/latest-stable/h2o-genmodel/javadoc/hex/genmodel/algos/ensemble/StackedEnsembleMojoModel.html)
* XGBoost:
* `XGBoostJavaMojoModel`
* `XGBoostNativeMojoModel`
* Unsupervised algorithms:
* Isolation Forest:
* [`IsolationForestMojoModel`](https://docs.h2o.ai/h2o/latest-stable/h2o-genmodel/javadoc/hex/genmodel/algos/isofor/IsolationForestMojoModel.html)

# Prerequisites #

* H2O 3.34(.0.1) or newer
* H2O.ai 3.34(.0.1) or newer
* Java 1.8 or newer

# Installation #
Expand All @@ -34,11 +44,11 @@ The build produces a library JAR file `pmml-h2o/target/pmml-h2o-1.2-SNAPSHOT.jar

A typical workflow can be summarized as follows:

1. Use H2O to train a model.
1. Use H2O.ai to train a model.
2. Download the model in Model ObJect, Optimized (MOJO) data format to a file in a local filesystem.
3. Use the JPMML-H2O command-line converter application to turn the MOJO file to a PMML file.

### The H2O side of operations
### The H2O.ai side of operations

Using the [`h2o`](https://github.com/h2oai/h2o-3/tree/master/h2o-py) package to train a regression model for the example Boston housing dataset:

Expand Down

0 comments on commit a67b795

Please sign in to comment.