-
Notifications
You must be signed in to change notification settings - Fork 80
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
9 changed files
with
22,316 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
44 changes: 44 additions & 0 deletions
44
pmml-sparkml-lightgbm/src/test/resources/LightGBMAuditNA.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,44 @@ | ||
import java.io.File | ||
|
||
import com.microsoft.azure.synapse.ml.lightgbm.LightGBMClassifier | ||
import org.apache.spark.ml.Pipeline | ||
import org.apache.spark.ml.feature._ | ||
import org.apache.spark.ml.linalg.Vector | ||
import org.apache.spark.sql.functions.{lit, udf} | ||
import org.apache.spark.sql.types.StringType | ||
import org.jpmml.sparkml.{DatasetUtil, PipelineModelUtil, PMMLBuilder} | ||
import org.jpmml.sparkml.feature.InvalidCategoryTransformer | ||
|
||
var df = DatasetUtil.loadCsv(spark, new File("csv/AuditNA.csv")) | ||
df = DatasetUtil.castColumn(df, "Adjusted", StringType) | ||
|
||
//DatasetUtil.storeSchema(df, new File("schema/AuditNA.json")) | ||
|
||
val cat_cols = Array("Education", "Employment", "Gender", "Marital", "Occupation") | ||
val cont_cols = Array("Age", "Hours", "Income") | ||
|
||
val labelIndexer = new StringIndexer().setInputCol("Adjusted").setOutputCol("idx_Adjusted") | ||
|
||
val indexer = new StringIndexer().setInputCols(cat_cols).setOutputCols(cat_cols.map(cat_col => "idx_" + cat_col)).setHandleInvalid("keep") | ||
val indexTransformer = new InvalidCategoryTransformer().setInputCols(indexer.getOutputCols).setOutputCols(cat_cols.map(cat_col => "idxTransformed_" + cat_col)) | ||
|
||
val assembler = new VectorAssembler().setInputCols(indexTransformer.getOutputCols ++ cont_cols).setOutputCol("featureVector").setHandleInvalid("keep") | ||
|
||
val classifier = new LightGBMClassifier().setObjective("binary").setNumIterations(101).setLabelCol(labelIndexer.getOutputCol).setFeaturesCol(assembler.getOutputCol) | ||
|
||
val pipeline = new Pipeline().setStages(Array(labelIndexer, indexer, indexTransformer, assembler, classifier)) | ||
val pipelineModel = pipeline.fit(df) | ||
|
||
//PipelineModelUtil.storeZip(pipelineModel, new File("pipeline/LightGBMAuditNA.zip")) | ||
|
||
new PMMLBuilder(df.schema, pipelineModel).buildFile(new File("pmml/LightGBMAuditNA.pmml")) | ||
|
||
val predLabel = udf{ (value: Float) => value.toInt.toString } | ||
val vectorToColumn = udf{ (vec: Vector, index: Int) => vec(index) } | ||
|
||
var lgbDf = pipelineModel.transform(df) | ||
lgbDf = lgbDf.selectExpr("prediction", "probability") | ||
lgbDf = lgbDf.withColumn("Adjusted", predLabel(lgbDf("prediction"))).drop("prediction") | ||
lgbDf = lgbDf.withColumn("probability(0)", vectorToColumn(lgbDf("probability"), lit(0))).withColumn("probability(1)", vectorToColumn(lgbDf("probability"), lit(1))).drop("probability").drop("probability") | ||
|
||
DatasetUtil.storeCsv(lgbDf, new File("csv/LightGBMAuditNA.csv")) |
33 changes: 33 additions & 0 deletions
33
pmml-sparkml-lightgbm/src/test/resources/LightGBMAutoNA.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
import java.io.File | ||
|
||
import com.microsoft.azure.synapse.ml.lightgbm.LightGBMRegressor | ||
import org.apache.spark.ml.Pipeline | ||
import org.apache.spark.ml.feature._ | ||
import org.jpmml.sparkml.{DatasetUtil, PipelineModelUtil, PMMLBuilder} | ||
import org.jpmml.sparkml.feature.InvalidCategoryTransformer | ||
|
||
var df = DatasetUtil.loadCsv(spark, new File("csv/AutoNA.csv")) | ||
|
||
//DatasetUtil.storeSchema(df, new File("schema/AutoNA.json")) | ||
|
||
val cat_cols = Array("cylinders", "model_year", "origin") | ||
val cont_cols = Array("acceleration", "displacement", "horsepower", "weight") | ||
|
||
val indexer = new StringIndexer().setInputCols(cat_cols).setOutputCols(cat_cols.map(cat_col => "idx_" + cat_col)).setHandleInvalid("keep") | ||
val indexTransformer = new InvalidCategoryTransformer().setInputCols(indexer.getOutputCols).setOutputCols(cat_cols.map(cat_col => "idxTransformed_" + cat_col)) | ||
|
||
val assembler = new VectorAssembler().setInputCols(indexTransformer.getOutputCols ++ cont_cols).setOutputCol("featureVector").setHandleInvalid("keep") | ||
|
||
val regressor = new LightGBMRegressor().setNumIterations(101).setLabelCol("mpg").setFeaturesCol(assembler.getOutputCol) | ||
|
||
val pipeline = new Pipeline().setStages(Array(indexer, indexTransformer, assembler, regressor)) | ||
val pipelineModel = pipeline.fit(df) | ||
|
||
//PipelineModelUtil.storeZip(pipelineModel, new File("pipeline/LightGBMAutoNA.zip")) | ||
|
||
new PMMLBuilder(df.schema, pipelineModel).buildFile(new File("pmml/LightGBMAutoNA.pmml")) | ||
|
||
var lgbDf = pipelineModel.transform(df) | ||
lgbDf = lgbDf.selectExpr("prediction as mpg") | ||
|
||
DatasetUtil.storeCsv(lgbDf, new File("csv/LightGBMAutoNA.csv")) |
Oops, something went wrong.