-
Notifications
You must be signed in to change notification settings - Fork 25
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #94 from jump-dev/jb/perf
Performance improvements
- Loading branch information
Showing
2 changed files
with
190 additions
and
18 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,148 @@ | ||
using SparseArrays | ||
using LinearAlgebra | ||
using Random | ||
using Clp | ||
using MathOptInterface | ||
const MOI = MathOptInterface | ||
|
||
using TimerOutputs | ||
|
||
struct RandomLP | ||
rows::Int | ||
cols::Int | ||
dens::Float64 | ||
end | ||
|
||
function generate_moi_problem(model, At, b, c; | ||
var_bounds = false, scalar = true) | ||
cols, rows = size(At) | ||
x = MOI.add_variables(model, cols) | ||
A_cols = rowvals(At) | ||
A_vals = nonzeros(At) | ||
if var_bounds | ||
for col in 1:cols | ||
MOI.add_constraint(model, MOI.SingleVariable(x[col]), | ||
MOI.LessThan(10.0)) | ||
MOI.add_constraint(model, MOI.SingleVariable(x[col]), | ||
MOI.GreaterThan(-10.0)) | ||
end | ||
end | ||
if scalar | ||
for row in 1:rows | ||
MOI.add_constraint(model, MOI.ScalarAffineFunction( | ||
[MOI.ScalarAffineTerm(A_vals[i], x[A_cols[i]]) for i in nzrange(At, row)], 0.0), | ||
MOI.LessThan(b[row])) | ||
end | ||
else | ||
for row in 1:rows | ||
MOI.add_constraint(model, MOI.VectorAffineFunction( | ||
[MOI.VectorAffineTerm(1, | ||
MOI.ScalarAffineTerm(A_vals[i], x[A_cols[i]]) | ||
) for i in nzrange(At, row)], [-b[row]]), | ||
MOI.Nonpositives(1)) | ||
end | ||
end | ||
objective = MOI.ScalarAffineFunction( | ||
[MOI.ScalarAffineTerm(c[i], x[i]) for i in findall(!iszero, c)], | ||
0.0) | ||
MOI.set(model, MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Float64}}(), objective) | ||
MOI.set(model, MOI.ObjectiveSense(), MOI.MIN_SENSE) | ||
return x | ||
end | ||
|
||
function random_data(seed, data) | ||
|
||
rows = data.rows | ||
cols = data.cols | ||
density = data.dens | ||
|
||
p_neg_element = 0.0 # 0.25 | ||
|
||
rng = Random.MersenneTwister(seed) | ||
|
||
f_A(r, n) = ifelse.(rand(r, n) .> p_neg_element, 1, -1) .* (15 .+ 30 .* rand(r, n)) | ||
|
||
At = sprand(rng, cols, rows, density, f_A) | ||
b = 50 * rand(rng, rows) | ||
|
||
# not using signs now | ||
sign = ifelse.(rand(rng, rows) .> 0.2, 'L', 'G') | ||
|
||
f_c(r, n) = 20 .* 2 .* (rand(r, n) .- 0.5) | ||
c = sprand(rng, cols, 0.5, f_c) | ||
|
||
return At, b, c | ||
end | ||
|
||
function bridged_cache_and_solver() | ||
model = MOI.Bridges.full_bridge_optimizer(MOI.Utilities.CachingOptimizer( | ||
MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), | ||
MOI.Utilities.MANUAL), Float64) | ||
clp = Clp.Optimizer() | ||
MOI.set(clp, MOI.Silent(), true) | ||
return model, clp | ||
end | ||
function cache_and_solver() | ||
model = MOI.Utilities.CachingOptimizer( | ||
MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), | ||
MOI.Utilities.MANUAL) | ||
clp = Clp.Optimizer() | ||
MOI.set(clp, MOI.Silent(), true) | ||
return model, clp | ||
end | ||
function bridged_cached_solver() | ||
model = MOI.Bridges.full_bridge_optimizer(MOI.Utilities.CachingOptimizer( | ||
MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), | ||
Clp.Optimizer()), Float64) | ||
MOI.set(model, MOI.Silent(), true) | ||
return model | ||
end | ||
function cached_solver() | ||
model = MOI.Utilities.CachingOptimizer( | ||
MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), | ||
Clp.Optimizer()) | ||
MOI.set(model, MOI.Silent(), true) | ||
return model | ||
end | ||
|
||
function time_build_and_solve(to_build, to_solve, At, b, c, scalar = true) | ||
@timeit "build" x = generate_moi_problem(to_build, At, b, c, scalar = scalar) | ||
if to_build !== to_solve | ||
@timeit "copy" MOI.copy_to(to_solve, to_build, copy_names = false) | ||
end | ||
@time @timeit "opt" MOI.optimize!(to_solve) | ||
MOI.get(to_solve, MOI.ObjectiveValue()) | ||
val = MOI.get(to_solve, MOI.SolveTime()) | ||
println(val) | ||
end | ||
|
||
function solve_clp(seed, data; time_limit_sec=Inf) | ||
|
||
reset_timer!() | ||
|
||
for i in 1:seed | ||
|
||
@timeit "data" At, b, c = random_data(i, data) | ||
|
||
bridged_cache, pure_solver = bridged_cache_and_solver() | ||
@timeit "bc + s" time_build_and_solve(bridged_cache, pure_solver, At, b, c) | ||
|
||
cache, pure_solver2 = cache_and_solver() | ||
@timeit "c + s" time_build_and_solve(cache, pure_solver2, At, b, c) | ||
|
||
full_solver = bridged_cached_solver() | ||
@timeit "bcs" time_build_and_solve(full_solver, full_solver, At, b, c) | ||
|
||
full_solver = bridged_cached_solver() | ||
@timeit "bcs + v" time_build_and_solve(full_solver, full_solver, At, b, c, false) | ||
|
||
cache_solver = cached_solver() | ||
@timeit "cs" time_build_and_solve(cache_solver, cache_solver, At, b, c) | ||
|
||
end | ||
|
||
print_timer() | ||
|
||
end | ||
|
||
solve_clp(10, RandomLP(10000, 20000, 0.01); time_limit_sec=5) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters