Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implement model printing #1646

Merged
merged 5 commits into from
Dec 6, 2018
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions docs/src/quickstart.md
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,11 @@ used to specify the optimizer to be used:
```julia
julia> model = Model(with_optimizer(GLPK.Optimizer))
A JuMP Model
Feasibility problem with:
Variables: 0
Model mode: Automatic
CachingOptimizer state: NoOptimizer
Solver name: No optimizer attached.
```

```@meta
Expand Down
1 change: 1 addition & 0 deletions docs/src/variables.md
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@ To illustrate these three types of variables, consider the following JuMP code
```jldoctest variables
julia> model = Model()
A JuMP Model
Feasibility problem with:
Variables: 0
Model mode: Automatic
CachingOptimizer state: NoOptimizer
Expand Down
1 change: 1 addition & 0 deletions src/macros.jl
Original file line number Diff line number Diff line change
Expand Up @@ -990,6 +990,7 @@ To minimize the value of the variable `x`, do as follows:
```jldoctest @objective; setup = :(using JuMP)
julia> model = Model()
A JuMP Model
Feasibility problem with:
Variables: 0
Model mode: Automatic
CachingOptimizer state: NoOptimizer
Expand Down
1 change: 1 addition & 0 deletions src/objective.jl
Original file line number Diff line number Diff line change
Expand Up @@ -90,6 +90,7 @@ Error if the objective is not convertible to type `T`.
```jldoctest objective_function; setup = :(using JuMP)
julia> model = Model()
A JuMP Model
Feasibility problem with:
Variables: 0
Model mode: Automatic
CachingOptimizer state: NoOptimizer
Expand Down
89 changes: 76 additions & 13 deletions src/print.jl
Original file line number Diff line number Diff line change
Expand Up @@ -147,34 +147,92 @@ wrap_in_inline_math_mode(str) = "\$ $str \$"
## Model
#------------------------------------------------------------------------
function Base.show(io::IO, model::Model)
plural(n) = (n==1 ? "" : "s")
println(io, "A JuMP Model")
sense = objective_sense(model)
if sense == MOI.MaxSense
print(io, "Maximization")
elseif sense == MOI.MinSense
print(io, "Minimization")
else
print(io, "Feasibility")
end
println(io, " problem with:")
# TODO: Consider allowing a JuMP model to have a string name.
println(io, "Variables: ", num_variables(model))
println(io, "Variable", plural(num_variables(model)), ": ",
num_variables(model))
# https://github.com/JuliaOpt/JuMP.jl/issues/1556
# TODO: This doesn't account for nonlinear objectives
# println(io, "\tObjective function type:",
# MOI.get(model, MOI.ObjectiveFunctionType()))
constraint_types = MOI.get(model, MOI.ListOfConstraints())
for (F, S) in MOI.get(model, MOI.ListOfConstraints())
num_constraints = MOI.get(model, MOI.NumberOfConstraints{F, S}())
println(io, "`$F`-in-`$S`: $num_constraints constraints")
println(io, "`$F`-in-`$S`: $num_constraints constraint",
plural(num_constraints))
end
if !iszero(num_nl_constraints(model))
println(io, "Nonlinear: ", num_nl_constraints(model), " constraints")
println(io, "Nonlinear: ", num_nl_constraints(model), " constraint",
plural(num_nl_constraints(model)))
end
model_mode = mode(model)
println(io, "Model mode: ", model_mode)
if model_mode == Manual || model_mode == Automatic
println(io, "CachingOptimizer state: ",
MOIU.state(backend(model)))
end
println(io, "Solver name: ", solver_name(model))
# The last print shouldn't have a new line
print(io, "Solver name: ", solver_name(model))
names_in_scope = collect(keys(object_dictionary(model)))
if !isempty(names_in_scope)
println(io, "Names registered in the model: ",
join(string.(names_in_scope), ", "))
println(io)
print(io, "Names registered in the model: ",
join(string.(names_in_scope), ", "))
end
end

function Base.print(io::IO, model::Model)
print(io, model_string(REPLMode, model))
end
function Base.show(io::IO, ::MIME"text/latex", model::Model)
print(io, wrap_in_math_mode(model_string(IJuliaMode, model)))
end
function model_string(print_mode, model::Model)
ijl = print_mode == IJuliaMode
mlubin marked this conversation as resolved.
Show resolved Hide resolved
sep = ijl ? " & " : " "
eol = ijl ? "\\\\\n" : "\n"
sense = objective_sense(model)
str = ""
if sense == MOI.MaxSense
str *= ijl ? "\\max" : "Max"
elseif sense == MOI.MinSense
str *= ijl ? "\\min" : "Min"
else
str *= ijl ? "\\text{feasibility}" : "Feasibility"
end
# TODO: The last print shouldn't have a new line
if sense != MOI.FeasibilitySense
if ijl
str *= "\\quad"
end
str *= sep
str *= function_string(print_mode,
objective_function(model, QuadExpr))
end
str *= eol
str *= ijl ? "\\text{Subject to} \\quad" : "Subject to" * eol
for (F, S) in MOI.get(model, MOI.ListOfConstraints())
for idx in MOI.get(model, MOI.ListOfConstraintIndices{F, S}())
# FIXME the shape may be incorrect here
shape = S <: MOI.AbstractScalarSet ? ScalarShape() : VectorShape()
cref = ConstraintRef(model, idx, shape)
con = constraint_object(cref)
str *= sep * constraint_string(print_mode, con) * eol
end
end
if ijl
str = "\\begin{alignat*}{1}" * str * "\\end{alignat*}\n"
end
return str
end

#------------------------------------------------------------------------
Expand Down Expand Up @@ -308,10 +366,10 @@ end
# `JuMP.jump_function` or `JuMP.function_string` and either `JuMP.moi_set` or
# `JuMP.in_set_string` should be implemented.
function Base.show(io::IO, ref::ConstraintRef)
print(io, constraint_string(REPLMode, name(ref), constraint_object(ref)))
print(io, constraint_string(REPLMode, ref))
end
function Base.show(io::IO, ::MIME"text/latex", ref::ConstraintRef)
print(io, constraint_string(IJuliaMode, name(ref), constraint_object(ref)))
print(io, constraint_string(IJuliaMode, ref))
end

"""
Expand Down Expand Up @@ -404,12 +462,14 @@ function in_set_string(print_mode, constraint::AbstractConstraint)
return in_set_string(print_mode, moi_set(constraint))
end

# constraint_object is a JuMP constraint object like AffExprConstraint.
# Assumes a .func and .set member.
function constraint_string(print_mode, constraint_name, constraint_object)
function constraint_string(print_mode, constraint_object::AbstractConstraint)
func_str = function_string(print_mode, constraint_object)
in_set_str = in_set_string(print_mode, constraint_object)
constraint_without_name = func_str * " " * in_set_str
return func_str * " " * in_set_str
end
function constraint_string(print_mode, constraint_name,
constraint_object::AbstractConstraint)
constraint_without_name = constraint_string(print_mode, constraint_object)
if print_mode == IJuliaMode
constraint_without_name = wrap_in_inline_math_mode(constraint_without_name)
end
Expand All @@ -419,6 +479,9 @@ function constraint_string(print_mode, constraint_name, constraint_object)
return constraint_name * " : " * constraint_without_name
end
end
function constraint_string(print_mode, ref::ConstraintRef)
return constraint_string(print_mode, name(ref), constraint_object(ref))
end

#------------------------------------------------------------------------
## NonlinearExprData
Expand Down
107 changes: 0 additions & 107 deletions test/old/print.jl
Original file line number Diff line number Diff line change
Expand Up @@ -336,113 +336,6 @@ end
end



@testset "Model" begin
le, ge, eq, fa = repl[:leq], repl[:geq], repl[:eq], repl[:for_all]
inset, dots = repl[:in], repl[:dots]
infty, union = repl[:infty], repl[:union]
Vert, sub2 = repl[:Vert], repl[:sub2]

#------------------------------------------------------------------

mod_1 = Model()
@variable(mod_1, a>=1)
@variable(mod_1, b<=1)
@variable(mod_1, -1<=c<=1)
@variable(mod_1, a1>=1,Int)
@variable(mod_1, b1<=1,Int)
@variable(mod_1, -1<=c1<=1,Int)
@variable(mod_1, x, Bin)
@variable(mod_1, y)
@variable(mod_1, z, Int)
@variable(mod_1, sos[1:3], Bin)
@variable(mod_1, 2 <= si <= 3, SemiInt)
@variable(mod_1, 2 <= sc <= 3, SemiCont)
@variable(mod_1, fi == 9)
@objective(mod_1, Max, a - b + 2a1 - 10x)
@constraint(mod_1, a + b - 10c - 2x + c1 <= 1)
@constraint(mod_1, a*b <= 2)
addSOS1(mod_1, [i*sos[i] for i in 1:3])
@constraint(mod_1, norm(sos) + a <= 1)

io_test(REPLMode, mod_1, """
Max a - b + 2 a1 - 10 x
Subject to
a + b - 10 c - 2 x + c1 $le 1
a*b - 2 $le 0
SOS1: {1 sos[1], 2 sos[2], 3 sos[3]}
$(Vert)[sos[1],sos[2],sos[3]]$(Vert)$(sub2) $le -a + 1
sos[i] $inset {0,1} $fa i $inset {1,2,3}
a $ge 1
b $le 1
-1 $le c $le 1
a1 $ge 1, integer
b1 $le 1, integer
-1 $le c1 $le 1, integer
x $inset {0,1}
y
z, integer
si $inset {2,$dots,3} $union {0}
sc $inset [2,3] $union {0}
fi = 9
""", repl=:print)

io_test(REPLMode, mod_1, """
Maximization problem with:
* 1 linear constraint
* 1 quadratic constraint
* 1 SOS constraint
* 1 SOC constraint
* 15 variables: 4 binary, 4 integer, 1 semicontinuous, 1 semi-integer
Solver is default solver""", repl=:show)

io_test(IJuliaMode, mod_1, """
\\begin{alignat*}{1}\\max\\quad & a - b + 2 a1 - 10 x\\\\
\\text{Subject to} \\quad & a + b - 10 c - 2 x + c1 \\leq 1\\\\
& a\\times b - 2 \\leq 0\\\\
& SOS1: \\{1 sos[1], 2 sos[2], 3 sos[3]\\}\\\\
& \\Vert[sos_{1},sos_{2},sos_{3}]\\Vert_2 $le -a + 1\\\\
& sos_{i} \\in \\{0,1\\} \\quad\\forall i \\in \\{1,2,3\\}\\\\
& a \\geq 1\\\\
& b \\leq 1\\\\
& -1 \\leq c \\leq 1\\\\
& a1 \\geq 1, \\in \\mathbb{Z}\\\\
& b1 \\leq 1, \\in \\mathbb{Z}\\\\
& -1 \\leq c1 \\leq 1, \\in \\mathbb{Z}\\\\
& x \\in \\{0,1\\}\\\\
& y\\\\
& z, \\in \\mathbb{Z}\\\\
& si \\in \\{2,\\dots,3\\} \\cup \\{0\\}\\\\
& sc \\in \\[2,3\\] \\cup \\{0\\}\\\\
& fi = 9\\\\
\\end{alignat*}
""")

#------------------------------------------------------------------

mod_2 = Model()
@variable(mod_2, x, Bin)
@variable(mod_2, y, Int)
@constraint(mod_2, x*y <= 1)

io_test(REPLMode, mod_2, """
Feasibility problem with:
* 0 linear constraints
* 1 quadratic constraint
* 2 variables: 1 binary, 1 integer
Solver is default solver""", repl=:show)

mod_2 = Model()
@variable(mod_2, x)
@constraint(mod_2, x <= 3)

io_test(REPLMode, mod_2, """
Feasibility problem with:
* 1 linear constraint
* 1 variable
Solver is default solver""", repl=:show)
end

@testset "changing variable categories" begin
le, ge, fa = repl[:leq], repl[:geq], repl[:for_all]
inset, dots = repl[:in], repl[:dots]
Expand Down
Loading