Skip to content

jwkanggist/tf-tiny-pose-estimation

Repository files navigation

Readme for Tiny pose estimation

  • Final update: 2018 Oct
  • All right reserved @ Jaewook Kang 2018

About

The aim of this repository is to introduce a tiny pose estimation tutorial. This pose estimation model is based on single hourglass model.

Keywords

  • Tensorflow
  • Single hourglass model
  • Human pose estimation
  • Inverted bottleneck (Mobilenet v2)

Installation

Compiler/Interface Dependencies

  • Tensorflow >=1.9
  • Python2 <= 2.7.12
  • Python3 <= 3.6.0
  • opencv-python >= 3.4.2
  • pycocotools == 2.0.0
  • Cython == 0.28.4
  • tensorpack == 0.8.0
  • Tf plot == 0.2.0.dev0

Git Clone

git clone https://github.com/jwkanggist/tf-tiny-pose-estimation
# cd tf-tiny-pose-estimation/
git init

pip install -r requirement.txt
./sh_scripts/install_tensorflow_gpu.sh

Pycocotools Installation (Only for Win)

For OSX and Ubuntu, we can install pycocotool by pip

git clone https://github.com/cocodataset/cocoapi
cd PythonAPI
make

How to Run

  1. Downloading dataset

Downloading dataset from the AI challenger website and place the dataset on ./dataset.

  1. Training
python ./tf_modules/trainer.py
  1. Monitoring by Tensorboard
tensorboard --logdir ./export/tf_logs

Components

./tfmodules/
├── dataset
│   └── ai_challenger
│
├── export
│   ├── train_setup_log
│   └── tf_logs
│
├── coco_dataload_modules
│   ├── testcodes
│   │   └── test_dataloader.py
│   ├── dataset_augment.py
│   └── dataset_prepare.py
│
├── data_loader.py
├── eval.py
├── model_builder.py
├── model_config.py
├── train_config.py
└── trainer.py

Log Data

  • ./export/train_setup_log/: We log and store setup of each training run in this folder.
  • ./export/tf_logs/run-yyyymmddHHmmss/train/: We log tensorboard summary of each training run in this folder.
  • ./export/tf_logs/run-yyyymmddHHmmss/valid/: We log tensorboard summary of each validation run in this folder.
  • ./export/tf_logs/run-yyyymmddHHmmss/pb_and_ckpt/: We save ckpt and pb files resulting from each training run.

Related Materials (All Korean)

Feedback

  • Issues: report issues, bugs, and request new features
  • Pull request
  • Email: [email protected]

License

  • Apach License 2.0

Authors information

  • Jaewook Kang Ph.D.
  • Personal website: link
  • Facebook : link
  • Linkedin : link

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published