Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
  • Loading branch information
Kittensx authored Oct 27, 2024
1 parent 82a973c commit 78514e0
Show file tree
Hide file tree
Showing 2 changed files with 541 additions and 0 deletions.
395 changes: 395 additions & 0 deletions modules/simple_karras_exponential_scheduler.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,395 @@
#simple_karras_exponential_scheduler.py
import torch
import logging
from k_diffusion.sampling import get_sigmas_karras, get_sigmas_exponential
import os
import yaml
import random
from watchdog.observers import Observer
from watchdog.events import FileSystemEventHandler
from datetime import datetime

import os
import logging
from datetime import datetime

class CustomLogger:
def __init__(self, log_name, print_to_console=False, debug_enabled=False):
self.print_to_console = print_to_console #prints to console
self.debug_enabled = debug_enabled #logs debug messages

# Create folders for generation info and error logs
gen_log_dir = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'simple_kes_generation')
error_log_dir = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'simple_kes_error')

os.makedirs(gen_log_dir, exist_ok=True)
os.makedirs(error_log_dir, exist_ok=True)

# Get current time in HH-MM-SS format
current_time = datetime.now().strftime('%H-%M-%S')

# Create file paths for the log files
gen_log_file_path = os.path.join(gen_log_dir, f'{current_time}.log')
error_log_file_path = os.path.join(error_log_dir, f'{current_time}.log')

# Set up generation logger
#self.gen_logger = logging.getLogger(f'{log_name}_generation')
self.gen_logger = logging.getLogger('simple_kes_generation')
self.gen_logger.setLevel(logging.DEBUG)
self._setup_file_handler(self.gen_logger, gen_log_file_path)

# Set up error logger
self.error_logger = logging.getLogger(f'{log_name}_error')
self.error_logger.setLevel(logging.ERROR)
self._setup_file_handler(self.error_logger, error_log_file_path)

# Prevent log propagation to root logger (important to avoid accidental console logging)
self.gen_logger.propagate = False
self.error_logger.propagate = False


# Optionally print to console
if self.print_to_console:
self._setup_console_handler(self.gen_logger)
self._setup_console_handler(self.error_logger)

def _setup_file_handler(self, logger, file_path):
"""Set up file handler for logging to a file."""
file_handler = logging.FileHandler(file_path, mode='a')
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)

def _setup_console_handler(self, logger):
"""Optionally set up a console handler for logging to the console."""
console_handler = logging.StreamHandler()
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)

def log_debug(self, message):
"""Log a debug message."""
if self.debug_enabled:
self.gen_logger.debug(message)

def log_info(self, message):
"""Log an info message."""
self.gen_logger.info(message)
info=log_info #alias created

def log_error(self, message):
"""Log an error message."""
self.error_logger.error(message)

def enable_console_logging(self):
"""Enable console logging dynamically."""
if not any(isinstance(handler, logging.StreamHandler) for handler in self.gen_logger.handlers):
self._setup_console_handler(self.gen_logger)

if not any(isinstance(handler, logging.StreamHandler) for handler in self.error_logger.handlers):
self._setup_console_handler(self.error_logger)

# Usage example
custom_logger = CustomLogger('simple_kes', print_to_console=False, debug_enabled=True)

# Logging examples
#custom_logger.log_debug("Debug message: Using default sigma_min: 0.01")
#custom_logger.info("Info message: Step completed successfully.")
#custom_logger.log_error("Error message: Something went wrong!")


class ConfigManagerYaml:
def __init__(self, config_path):
self.config_path = config_path
self.config_data = self.load_config() # Initialize config_data here

def load_config(self):
try:
with open(self.config_path, 'r') as f:
user_config = yaml.safe_load(f)
return user_config
except FileNotFoundError:
print(f"Config file not found: {self.config_path}. Using empty config.")
return {}
except yaml.YAMLError as e:
print(f"Error loading config file: {e}")
return {}


#ConfigWatcher monitors changes to the config file and reloads during program use (so you can continue work without resetting the program)
class ConfigWatcher(FileSystemEventHandler):
def __init__(self, config_manager, config_path):
self.config_manager = config_manager
self.config_path = config_path

def on_modified(self, event):
if event.src_path == self.config_path:
logging.info(f"Config file {self.config_path} modified. Reloading config.")
self.config_manager.config_data = self.config_manager.load_config()



def start_config_watcher(config_manager, config_path):
event_handler = ConfigWatcher(config_manager, config_path)
observer = Observer()
observer.schedule(event_handler, os.path.dirname(config_path), recursive=False)
observer.start()
return observer


"""
Scheduler function that blends sigma sequences using Karras and Exponential methods with adaptive parameters.
Parameters are dynamically updated if the config file changes during execution.
"""
# If user config is provided, update default config with user values
config_path = "modules/simple_kes_scheduler.yaml"
config_manager = ConfigManagerYaml(config_path)


# Start watching for config changes
observer = start_config_watcher(config_manager, config_path)
'''
def get_random_or_default(config, key_prefix, default_value):
"""Helper function to either randomize a value or return the default."""
randomize_flag = config['scheduler'].get(f'{key_prefix}_rand', False)
if randomize_flag:
rand_min = config['scheduler'].get(f'{key_prefix}_rand_min', default_value * 0.8)
rand_max = config['scheduler'].get(f'{key_prefix}_rand_max', default_value * 1.2)
value = random.uniform(rand_min, rand_max)
custom_logger.info(f"Randomized {key_prefix}: {value}" )
else:
value = default_value
custom_logger.info(f"Using default {key_prefix}: {value}")
return value
'''
def get_random_or_default(config, key_prefix, default_value, global_randomize):
"""Helper function to either randomize a value based on conditions or return the default."""
# Check if global randomize is on or the individual flag is on
randomize_flag = global_randomize or config['scheduler'].get(f'{key_prefix}_rand', False)

if randomize_flag:
# Use specified min/max for randomization if the individual flag is set or global randomize is on
rand_min = config['scheduler'].get(f'{key_prefix}_rand_min', default_value * 0.8)
rand_max = config['scheduler'].get(f'{key_prefix}_rand_max', default_value * 1.2)
value = random.uniform(rand_min, rand_max)
custom_logger.info(f"Randomized {key_prefix}: {value}")
else:
value = default_value
custom_logger.info(f"Using default {key_prefix}: {value}")

return value


def simple_karras_exponential_scheduler(
n, device, sigma_min=0.01, sigma_max=50, start_blend=0.1, end_blend=0.5,
sharpness=0.95, early_stopping_threshold=0.01, update_interval=10, initial_step_size=0.9,
final_step_size=0.2, initial_noise_scale=1.25, final_noise_scale=0.8, smooth_blend_factor=11, step_size_factor=0.8, noise_scale_factor=0.9, randomize=False, user_config=None
):
"""
Scheduler function that blends sigma sequences using Karras and Exponential methods with adaptive parameters.
Parameters:
n (int): Number of steps.
sigma_min (float): Minimum sigma value.
sigma_max (float): Maximum sigma value.
device (torch.device): The device on which to perform computations (e.g., 'cuda' or 'cpu').
start_blend (float): Initial blend factor for dynamic blending.
end_bend (float): Final blend factor for dynamic blending.
sharpen_factor (float): Sharpening factor to be applied adaptively.
early_stopping_threshold (float): Threshold to trigger early stopping.
update_interval (int): Interval to update blend factors.
initial_step_size (float): Initial step size for adaptive step size calculation.
final_step_size (float): Final step size for adaptive step size calculation.
initial_noise_scale (float): Initial noise scale factor.
final_noise_scale (float): Final noise scale factor.
step_size_factor: Adjust to compensate for oversmoothing
noise_scale_factor: Adjust to provide more variation
Returns:
torch.Tensor: A tensor of blended sigma values.
"""
#debug_log("Entered simple_karras_exponential_scheduler function")
default_config = {
"debug": False,
"device": "cuda" if torch.cuda.is_available() else "cpu",
"sigma_min": 0.01,
"sigma_max": 50, #if sigma_max is too low the resulting picture may be undesirable.
"start_blend": 0.1,
"end_blend": 0.5,
"sharpness": 0.95,
"early_stopping_threshold": 0.01,
"update_interval": 10,
"initial_step_size": 0.9,
"final_step_size": 0.2,
"initial_noise_scale": 1.25,
"final_noise_scale": 0.8,
"smooth_blend_factor": 11,
"step_size_factor": 0.8, #suggested value to avoid oversmoothing
"noise_scale_factor": 0.9, #suggested value to add more variation
"randomize": False,
"sigma_min_rand": False,
"sigma_min_rand_min": 0.001,
"sigma_min_rand_max": 0.05,
"sigma_max_rand": False,
"sigma_max_rand_min": 0.05,
"sigma_max_rand_max": 0.20,
"start_blend_rand": False,
"start_blend_rand_min": 0.05,
"start_blend_rand_max": 0.2,
"end_blend_rand": False,
"end_blend_rand_min": 0.4,
"end_blend_rand_max": 0.6,
"sharpness_rand": False,
"sharpness_rand_min": 0.85,
"sharpness_rand_max": 1.0,
"early_stopping_rand": False,
"early_stopping_rand_min": 0.001,
"early_stopping_rand_max": 0.02,
"update_interval_rand": False,
"update_interval_rand_min": 5,
"update_interval_rand_max": 10,
"initial_step_rand": False,
"initial_step_rand_min": 0.7,
"initial_step_rand_max": 1.0,
"final_step_rand": False,
"final_step_rand_min": 0.1,
"final_step_rand_max": 0.3,
"initial_noise_rand": False,
"initial_noise_rand_min": 1.0,
"initial_noise_rand_max": 1.5,
"final_noise_rand": False,
"final_noise_rand_min": 0.6,
"final_noise_rand_max": 1.0,
"smooth_blend_factor_rand": False,
"smooth_blend_factor_rand_min": 6,
"smooth_blend_factor_rand_max": 11,
"step_size_factor_rand": False,
"step_size_factor_rand_min": 0.65,
"step_size_factor_rand_max": 0.85,
"noise_scale_factor_rand": False,
"noise_scale_factor_rand_min": 0.75,
"noise_scale_factor_rand_max": 0.95,
}
custom_logger.info(f"Default Config create {default_config}")
for key, value in default_config.items():
custom_logger.info(f"Default Config - {key}: {value}")

#config = config_manager.load_config()
config = config_manager.load_config().get('scheduler', {})
global_randomize = config.get('randomize', randomize)

custom_logger.info(f"Config loaded from yaml {config}")
for key, value in config.items():
custom_logger.info(f"Config - {key}: {value}")

# Check if the scheduler config is available in the YAML file
scheduler_config = config.get('scheduler', {})
if not scheduler_config:
raise ValueError("Scheduler configuration is missing from the config file.")

for key, value in scheduler_config.items():
custom_logger.info(f"Scheduler Config before update - {key}: {value}")
for key, value in scheduler_config.items():
if key in default_config:
default_config[key] = value
custom_logger.info(f"Overriding default config: {key} = {value}")
else:
debug.log(f"Ignoring unknown config option: {key}")
# Now using default_config, updated with valid YAML values
custom_logger.info(f"Final Config after overriding: {default_config}")

# Example: Reading the randomization flags from the config
randomize = config.get('scheduler', {}).get('randomize', False)

# Use the get_random_or_default function for each parameter
#if randomize = false, then it checks for each variable for randomize, if true, then that particular option is randomized, with the others using default or config defined values.
sigma_min = get_random_or_default(config, 'sigma_min', sigma_min, global_randomize)
sigma_max = get_random_or_default(config, 'sigma_max', sigma_max, global_randomize)
start_blend = get_random_or_default(config, 'start_blend', start_blend, global_randomize)
end_blend = get_random_or_default(config, 'end_blend', end_blend, global_randomize)
sharpness = get_random_or_default(config, 'sharpness', sharpness, global_randomize)
early_stopping_threshold = get_random_or_default(config, 'early_stopping', early_stopping_threshold, global_randomize)
update_interval = get_random_or_default(config, 'update_interval', update_interval, global_randomize)
initial_step_size = get_random_or_default(config, 'initial_step', initial_step_size, global_randomize)
final_step_size = get_random_or_default(config, 'final_step', final_step_size, global_randomize)
initial_noise_scale = get_random_or_default(config, 'initial_noise', initial_noise_scale, global_randomize)
final_noise_scale = get_random_or_default(config, 'final_noise', final_noise_scale, global_randomize)
smooth_blend_factor = get_random_or_default(config, 'smooth_blend_factor', smooth_blend_factor, global_randomize)
step_size_factor = get_random_or_default(config, 'step_size_factor', step_size_factor, global_randomize)
noise_scale_factor = get_random_or_default(config, 'noise_scale_factor', noise_scale_factor, global_randomize)


# Expand sigma_max slightly to account for smoother transitions
sigma_max = sigma_max * 1.1
custom_logger.info(f"Using device: {device}")
# Generate sigma sequences using Karras and Exponential methods
sigmas_karras = get_sigmas_karras(n=n, sigma_min=sigma_min, sigma_max=sigma_max, device=device)
sigmas_exponential = get_sigmas_exponential(n=n, sigma_min=sigma_min, sigma_max=sigma_max, device=device)
config = config_manager.config_data.get('scheduler', {})
# Match lengths of sigma sequences
target_length = min(len(sigmas_karras), len(sigmas_exponential))
sigmas_karras = sigmas_karras[:target_length]
sigmas_exponential = sigmas_exponential[:target_length]

custom_logger.info(f"Generated sigma sequences. Karras: {sigmas_karras}, Exponential: {sigmas_exponential}")
if sigmas_karras is None:
raise ValueError("Sigmas Karras:{sigmas_karras} Failed to generate or assign sigmas correctly.")
if sigmas_exponential is None:
raise ValueError("Sigmas Exponential: {sigmas_exponential} Failed to generate or assign sigmas correctly.")
#sigmas_karras = torch.zeros(n).to(device)
#sigmas_exponential = torch.zeros(n).to(device)
try:
pass
except Exception as e:
error_log(f"Error generating sigmas: {e}")
finally:
# Stop the observer when done
observer.stop()
observer.join()

# Define progress and initialize blend factor
progress = torch.linspace(0, 1, len(sigmas_karras)).to(device)
custom_logger.info(f"Progress created {progress}")
custom_logger.info(f"Progress Using device: {device}")

sigs = torch.zeros_like(sigmas_karras).to(device)
custom_logger.info(f"Sigs created {sigs}")
custom_logger.info(f"Sigs Using device: {device}")

# Iterate through each step, dynamically adjust blend factor, step size, and noise scaling
for i in range(len(sigmas_karras)):
# Adaptive step size and blend factor calculations
step_size = initial_step_size * (1 - progress[i]) + final_step_size * progress[i] * step_size_factor # 0.8 default value Adjusted to avoid over-smoothing
custom_logger.info(f"Step_size created {step_size}" )
dynamic_blend_factor = start_blend * (1 - progress[i]) + end_blend * progress[i]
custom_logger.info(f"Dynamic_blend_factor created {dynamic_blend_factor}" )
noise_scale = initial_noise_scale * (1 - progress[i]) + final_noise_scale * progress[i] * noise_scale_factor # 0.9 default value Adjusted to keep more variation
custom_logger.info(f"noise_scale created {noise_scale}" )

# Calculate smooth blending between the two sigma sequences
smooth_blend = torch.sigmoid((dynamic_blend_factor - 0.5) * smooth_blend_factor) # Increase scaling factor to smooth transitions more
custom_logger.info(f"smooth_blend created {smooth_blend}" )

# Compute blended sigma values
blended_sigma = sigmas_karras[i] * (1 - smooth_blend) + sigmas_exponential[i] * smooth_blend
custom_logger.info(f"blended_sigma created {blended_sigma}" )

# Apply step size and noise scaling
sigs[i] = blended_sigma * step_size * noise_scale

# Optional: Adaptive sharpening based on sigma values
sharpen_mask = torch.where(sigs < sigma_min * 1.5, sharpness, 1.0).to(device)
custom_logger.info(f"sharpen_mask created {sharpen_mask} with device {device}" )
sigs = sigs * sharpen_mask

# Implement early stop criteria based on sigma convergence
change = torch.abs(sigs[1:] - sigs[:-1])
if torch.all(change < early_stopping_threshold):
custom_logger.info("Early stopping criteria met." )
return sigs[:len(change) + 1].to(device)

if torch.isnan(sigs).any() or torch.isinf(sigs).any():
raise ValueError("Invalid sigma values detected (NaN or Inf).")

return sigs.to(device)
Loading

0 comments on commit 78514e0

Please sign in to comment.