forked from AUTOMATIC1111/stable-diffusion-webui
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
541 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,395 @@ | ||
#simple_karras_exponential_scheduler.py | ||
import torch | ||
import logging | ||
from k_diffusion.sampling import get_sigmas_karras, get_sigmas_exponential | ||
import os | ||
import yaml | ||
import random | ||
from watchdog.observers import Observer | ||
from watchdog.events import FileSystemEventHandler | ||
from datetime import datetime | ||
|
||
import os | ||
import logging | ||
from datetime import datetime | ||
|
||
class CustomLogger: | ||
def __init__(self, log_name, print_to_console=False, debug_enabled=False): | ||
self.print_to_console = print_to_console #prints to console | ||
self.debug_enabled = debug_enabled #logs debug messages | ||
|
||
# Create folders for generation info and error logs | ||
gen_log_dir = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'simple_kes_generation') | ||
error_log_dir = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'simple_kes_error') | ||
|
||
os.makedirs(gen_log_dir, exist_ok=True) | ||
os.makedirs(error_log_dir, exist_ok=True) | ||
|
||
# Get current time in HH-MM-SS format | ||
current_time = datetime.now().strftime('%H-%M-%S') | ||
|
||
# Create file paths for the log files | ||
gen_log_file_path = os.path.join(gen_log_dir, f'{current_time}.log') | ||
error_log_file_path = os.path.join(error_log_dir, f'{current_time}.log') | ||
|
||
# Set up generation logger | ||
#self.gen_logger = logging.getLogger(f'{log_name}_generation') | ||
self.gen_logger = logging.getLogger('simple_kes_generation') | ||
self.gen_logger.setLevel(logging.DEBUG) | ||
self._setup_file_handler(self.gen_logger, gen_log_file_path) | ||
|
||
# Set up error logger | ||
self.error_logger = logging.getLogger(f'{log_name}_error') | ||
self.error_logger.setLevel(logging.ERROR) | ||
self._setup_file_handler(self.error_logger, error_log_file_path) | ||
|
||
# Prevent log propagation to root logger (important to avoid accidental console logging) | ||
self.gen_logger.propagate = False | ||
self.error_logger.propagate = False | ||
|
||
|
||
# Optionally print to console | ||
if self.print_to_console: | ||
self._setup_console_handler(self.gen_logger) | ||
self._setup_console_handler(self.error_logger) | ||
|
||
def _setup_file_handler(self, logger, file_path): | ||
"""Set up file handler for logging to a file.""" | ||
file_handler = logging.FileHandler(file_path, mode='a') | ||
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') | ||
file_handler.setFormatter(formatter) | ||
logger.addHandler(file_handler) | ||
|
||
def _setup_console_handler(self, logger): | ||
"""Optionally set up a console handler for logging to the console.""" | ||
console_handler = logging.StreamHandler() | ||
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') | ||
console_handler.setFormatter(formatter) | ||
logger.addHandler(console_handler) | ||
|
||
def log_debug(self, message): | ||
"""Log a debug message.""" | ||
if self.debug_enabled: | ||
self.gen_logger.debug(message) | ||
|
||
def log_info(self, message): | ||
"""Log an info message.""" | ||
self.gen_logger.info(message) | ||
info=log_info #alias created | ||
|
||
def log_error(self, message): | ||
"""Log an error message.""" | ||
self.error_logger.error(message) | ||
|
||
def enable_console_logging(self): | ||
"""Enable console logging dynamically.""" | ||
if not any(isinstance(handler, logging.StreamHandler) for handler in self.gen_logger.handlers): | ||
self._setup_console_handler(self.gen_logger) | ||
|
||
if not any(isinstance(handler, logging.StreamHandler) for handler in self.error_logger.handlers): | ||
self._setup_console_handler(self.error_logger) | ||
|
||
# Usage example | ||
custom_logger = CustomLogger('simple_kes', print_to_console=False, debug_enabled=True) | ||
|
||
# Logging examples | ||
#custom_logger.log_debug("Debug message: Using default sigma_min: 0.01") | ||
#custom_logger.info("Info message: Step completed successfully.") | ||
#custom_logger.log_error("Error message: Something went wrong!") | ||
|
||
|
||
class ConfigManagerYaml: | ||
def __init__(self, config_path): | ||
self.config_path = config_path | ||
self.config_data = self.load_config() # Initialize config_data here | ||
|
||
def load_config(self): | ||
try: | ||
with open(self.config_path, 'r') as f: | ||
user_config = yaml.safe_load(f) | ||
return user_config | ||
except FileNotFoundError: | ||
print(f"Config file not found: {self.config_path}. Using empty config.") | ||
return {} | ||
except yaml.YAMLError as e: | ||
print(f"Error loading config file: {e}") | ||
return {} | ||
|
||
|
||
#ConfigWatcher monitors changes to the config file and reloads during program use (so you can continue work without resetting the program) | ||
class ConfigWatcher(FileSystemEventHandler): | ||
def __init__(self, config_manager, config_path): | ||
self.config_manager = config_manager | ||
self.config_path = config_path | ||
|
||
def on_modified(self, event): | ||
if event.src_path == self.config_path: | ||
logging.info(f"Config file {self.config_path} modified. Reloading config.") | ||
self.config_manager.config_data = self.config_manager.load_config() | ||
|
||
|
||
|
||
def start_config_watcher(config_manager, config_path): | ||
event_handler = ConfigWatcher(config_manager, config_path) | ||
observer = Observer() | ||
observer.schedule(event_handler, os.path.dirname(config_path), recursive=False) | ||
observer.start() | ||
return observer | ||
|
||
|
||
""" | ||
Scheduler function that blends sigma sequences using Karras and Exponential methods with adaptive parameters. | ||
Parameters are dynamically updated if the config file changes during execution. | ||
""" | ||
# If user config is provided, update default config with user values | ||
config_path = "modules/simple_kes_scheduler.yaml" | ||
config_manager = ConfigManagerYaml(config_path) | ||
|
||
|
||
# Start watching for config changes | ||
observer = start_config_watcher(config_manager, config_path) | ||
''' | ||
def get_random_or_default(config, key_prefix, default_value): | ||
"""Helper function to either randomize a value or return the default.""" | ||
randomize_flag = config['scheduler'].get(f'{key_prefix}_rand', False) | ||
if randomize_flag: | ||
rand_min = config['scheduler'].get(f'{key_prefix}_rand_min', default_value * 0.8) | ||
rand_max = config['scheduler'].get(f'{key_prefix}_rand_max', default_value * 1.2) | ||
value = random.uniform(rand_min, rand_max) | ||
custom_logger.info(f"Randomized {key_prefix}: {value}" ) | ||
else: | ||
value = default_value | ||
custom_logger.info(f"Using default {key_prefix}: {value}") | ||
return value | ||
''' | ||
def get_random_or_default(config, key_prefix, default_value, global_randomize): | ||
"""Helper function to either randomize a value based on conditions or return the default.""" | ||
# Check if global randomize is on or the individual flag is on | ||
randomize_flag = global_randomize or config['scheduler'].get(f'{key_prefix}_rand', False) | ||
|
||
if randomize_flag: | ||
# Use specified min/max for randomization if the individual flag is set or global randomize is on | ||
rand_min = config['scheduler'].get(f'{key_prefix}_rand_min', default_value * 0.8) | ||
rand_max = config['scheduler'].get(f'{key_prefix}_rand_max', default_value * 1.2) | ||
value = random.uniform(rand_min, rand_max) | ||
custom_logger.info(f"Randomized {key_prefix}: {value}") | ||
else: | ||
value = default_value | ||
custom_logger.info(f"Using default {key_prefix}: {value}") | ||
|
||
return value | ||
|
||
|
||
def simple_karras_exponential_scheduler( | ||
n, device, sigma_min=0.01, sigma_max=50, start_blend=0.1, end_blend=0.5, | ||
sharpness=0.95, early_stopping_threshold=0.01, update_interval=10, initial_step_size=0.9, | ||
final_step_size=0.2, initial_noise_scale=1.25, final_noise_scale=0.8, smooth_blend_factor=11, step_size_factor=0.8, noise_scale_factor=0.9, randomize=False, user_config=None | ||
): | ||
""" | ||
Scheduler function that blends sigma sequences using Karras and Exponential methods with adaptive parameters. | ||
Parameters: | ||
n (int): Number of steps. | ||
sigma_min (float): Minimum sigma value. | ||
sigma_max (float): Maximum sigma value. | ||
device (torch.device): The device on which to perform computations (e.g., 'cuda' or 'cpu'). | ||
start_blend (float): Initial blend factor for dynamic blending. | ||
end_bend (float): Final blend factor for dynamic blending. | ||
sharpen_factor (float): Sharpening factor to be applied adaptively. | ||
early_stopping_threshold (float): Threshold to trigger early stopping. | ||
update_interval (int): Interval to update blend factors. | ||
initial_step_size (float): Initial step size for adaptive step size calculation. | ||
final_step_size (float): Final step size for adaptive step size calculation. | ||
initial_noise_scale (float): Initial noise scale factor. | ||
final_noise_scale (float): Final noise scale factor. | ||
step_size_factor: Adjust to compensate for oversmoothing | ||
noise_scale_factor: Adjust to provide more variation | ||
Returns: | ||
torch.Tensor: A tensor of blended sigma values. | ||
""" | ||
#debug_log("Entered simple_karras_exponential_scheduler function") | ||
default_config = { | ||
"debug": False, | ||
"device": "cuda" if torch.cuda.is_available() else "cpu", | ||
"sigma_min": 0.01, | ||
"sigma_max": 50, #if sigma_max is too low the resulting picture may be undesirable. | ||
"start_blend": 0.1, | ||
"end_blend": 0.5, | ||
"sharpness": 0.95, | ||
"early_stopping_threshold": 0.01, | ||
"update_interval": 10, | ||
"initial_step_size": 0.9, | ||
"final_step_size": 0.2, | ||
"initial_noise_scale": 1.25, | ||
"final_noise_scale": 0.8, | ||
"smooth_blend_factor": 11, | ||
"step_size_factor": 0.8, #suggested value to avoid oversmoothing | ||
"noise_scale_factor": 0.9, #suggested value to add more variation | ||
"randomize": False, | ||
"sigma_min_rand": False, | ||
"sigma_min_rand_min": 0.001, | ||
"sigma_min_rand_max": 0.05, | ||
"sigma_max_rand": False, | ||
"sigma_max_rand_min": 0.05, | ||
"sigma_max_rand_max": 0.20, | ||
"start_blend_rand": False, | ||
"start_blend_rand_min": 0.05, | ||
"start_blend_rand_max": 0.2, | ||
"end_blend_rand": False, | ||
"end_blend_rand_min": 0.4, | ||
"end_blend_rand_max": 0.6, | ||
"sharpness_rand": False, | ||
"sharpness_rand_min": 0.85, | ||
"sharpness_rand_max": 1.0, | ||
"early_stopping_rand": False, | ||
"early_stopping_rand_min": 0.001, | ||
"early_stopping_rand_max": 0.02, | ||
"update_interval_rand": False, | ||
"update_interval_rand_min": 5, | ||
"update_interval_rand_max": 10, | ||
"initial_step_rand": False, | ||
"initial_step_rand_min": 0.7, | ||
"initial_step_rand_max": 1.0, | ||
"final_step_rand": False, | ||
"final_step_rand_min": 0.1, | ||
"final_step_rand_max": 0.3, | ||
"initial_noise_rand": False, | ||
"initial_noise_rand_min": 1.0, | ||
"initial_noise_rand_max": 1.5, | ||
"final_noise_rand": False, | ||
"final_noise_rand_min": 0.6, | ||
"final_noise_rand_max": 1.0, | ||
"smooth_blend_factor_rand": False, | ||
"smooth_blend_factor_rand_min": 6, | ||
"smooth_blend_factor_rand_max": 11, | ||
"step_size_factor_rand": False, | ||
"step_size_factor_rand_min": 0.65, | ||
"step_size_factor_rand_max": 0.85, | ||
"noise_scale_factor_rand": False, | ||
"noise_scale_factor_rand_min": 0.75, | ||
"noise_scale_factor_rand_max": 0.95, | ||
} | ||
custom_logger.info(f"Default Config create {default_config}") | ||
for key, value in default_config.items(): | ||
custom_logger.info(f"Default Config - {key}: {value}") | ||
|
||
#config = config_manager.load_config() | ||
config = config_manager.load_config().get('scheduler', {}) | ||
global_randomize = config.get('randomize', randomize) | ||
|
||
custom_logger.info(f"Config loaded from yaml {config}") | ||
for key, value in config.items(): | ||
custom_logger.info(f"Config - {key}: {value}") | ||
|
||
# Check if the scheduler config is available in the YAML file | ||
scheduler_config = config.get('scheduler', {}) | ||
if not scheduler_config: | ||
raise ValueError("Scheduler configuration is missing from the config file.") | ||
|
||
for key, value in scheduler_config.items(): | ||
custom_logger.info(f"Scheduler Config before update - {key}: {value}") | ||
for key, value in scheduler_config.items(): | ||
if key in default_config: | ||
default_config[key] = value | ||
custom_logger.info(f"Overriding default config: {key} = {value}") | ||
else: | ||
debug.log(f"Ignoring unknown config option: {key}") | ||
# Now using default_config, updated with valid YAML values | ||
custom_logger.info(f"Final Config after overriding: {default_config}") | ||
|
||
# Example: Reading the randomization flags from the config | ||
randomize = config.get('scheduler', {}).get('randomize', False) | ||
|
||
# Use the get_random_or_default function for each parameter | ||
#if randomize = false, then it checks for each variable for randomize, if true, then that particular option is randomized, with the others using default or config defined values. | ||
sigma_min = get_random_or_default(config, 'sigma_min', sigma_min, global_randomize) | ||
sigma_max = get_random_or_default(config, 'sigma_max', sigma_max, global_randomize) | ||
start_blend = get_random_or_default(config, 'start_blend', start_blend, global_randomize) | ||
end_blend = get_random_or_default(config, 'end_blend', end_blend, global_randomize) | ||
sharpness = get_random_or_default(config, 'sharpness', sharpness, global_randomize) | ||
early_stopping_threshold = get_random_or_default(config, 'early_stopping', early_stopping_threshold, global_randomize) | ||
update_interval = get_random_or_default(config, 'update_interval', update_interval, global_randomize) | ||
initial_step_size = get_random_or_default(config, 'initial_step', initial_step_size, global_randomize) | ||
final_step_size = get_random_or_default(config, 'final_step', final_step_size, global_randomize) | ||
initial_noise_scale = get_random_or_default(config, 'initial_noise', initial_noise_scale, global_randomize) | ||
final_noise_scale = get_random_or_default(config, 'final_noise', final_noise_scale, global_randomize) | ||
smooth_blend_factor = get_random_or_default(config, 'smooth_blend_factor', smooth_blend_factor, global_randomize) | ||
step_size_factor = get_random_or_default(config, 'step_size_factor', step_size_factor, global_randomize) | ||
noise_scale_factor = get_random_or_default(config, 'noise_scale_factor', noise_scale_factor, global_randomize) | ||
|
||
|
||
# Expand sigma_max slightly to account for smoother transitions | ||
sigma_max = sigma_max * 1.1 | ||
custom_logger.info(f"Using device: {device}") | ||
# Generate sigma sequences using Karras and Exponential methods | ||
sigmas_karras = get_sigmas_karras(n=n, sigma_min=sigma_min, sigma_max=sigma_max, device=device) | ||
sigmas_exponential = get_sigmas_exponential(n=n, sigma_min=sigma_min, sigma_max=sigma_max, device=device) | ||
config = config_manager.config_data.get('scheduler', {}) | ||
# Match lengths of sigma sequences | ||
target_length = min(len(sigmas_karras), len(sigmas_exponential)) | ||
sigmas_karras = sigmas_karras[:target_length] | ||
sigmas_exponential = sigmas_exponential[:target_length] | ||
|
||
custom_logger.info(f"Generated sigma sequences. Karras: {sigmas_karras}, Exponential: {sigmas_exponential}") | ||
if sigmas_karras is None: | ||
raise ValueError("Sigmas Karras:{sigmas_karras} Failed to generate or assign sigmas correctly.") | ||
if sigmas_exponential is None: | ||
raise ValueError("Sigmas Exponential: {sigmas_exponential} Failed to generate or assign sigmas correctly.") | ||
#sigmas_karras = torch.zeros(n).to(device) | ||
#sigmas_exponential = torch.zeros(n).to(device) | ||
try: | ||
pass | ||
except Exception as e: | ||
error_log(f"Error generating sigmas: {e}") | ||
finally: | ||
# Stop the observer when done | ||
observer.stop() | ||
observer.join() | ||
|
||
# Define progress and initialize blend factor | ||
progress = torch.linspace(0, 1, len(sigmas_karras)).to(device) | ||
custom_logger.info(f"Progress created {progress}") | ||
custom_logger.info(f"Progress Using device: {device}") | ||
|
||
sigs = torch.zeros_like(sigmas_karras).to(device) | ||
custom_logger.info(f"Sigs created {sigs}") | ||
custom_logger.info(f"Sigs Using device: {device}") | ||
|
||
# Iterate through each step, dynamically adjust blend factor, step size, and noise scaling | ||
for i in range(len(sigmas_karras)): | ||
# Adaptive step size and blend factor calculations | ||
step_size = initial_step_size * (1 - progress[i]) + final_step_size * progress[i] * step_size_factor # 0.8 default value Adjusted to avoid over-smoothing | ||
custom_logger.info(f"Step_size created {step_size}" ) | ||
dynamic_blend_factor = start_blend * (1 - progress[i]) + end_blend * progress[i] | ||
custom_logger.info(f"Dynamic_blend_factor created {dynamic_blend_factor}" ) | ||
noise_scale = initial_noise_scale * (1 - progress[i]) + final_noise_scale * progress[i] * noise_scale_factor # 0.9 default value Adjusted to keep more variation | ||
custom_logger.info(f"noise_scale created {noise_scale}" ) | ||
|
||
# Calculate smooth blending between the two sigma sequences | ||
smooth_blend = torch.sigmoid((dynamic_blend_factor - 0.5) * smooth_blend_factor) # Increase scaling factor to smooth transitions more | ||
custom_logger.info(f"smooth_blend created {smooth_blend}" ) | ||
|
||
# Compute blended sigma values | ||
blended_sigma = sigmas_karras[i] * (1 - smooth_blend) + sigmas_exponential[i] * smooth_blend | ||
custom_logger.info(f"blended_sigma created {blended_sigma}" ) | ||
|
||
# Apply step size and noise scaling | ||
sigs[i] = blended_sigma * step_size * noise_scale | ||
|
||
# Optional: Adaptive sharpening based on sigma values | ||
sharpen_mask = torch.where(sigs < sigma_min * 1.5, sharpness, 1.0).to(device) | ||
custom_logger.info(f"sharpen_mask created {sharpen_mask} with device {device}" ) | ||
sigs = sigs * sharpen_mask | ||
|
||
# Implement early stop criteria based on sigma convergence | ||
change = torch.abs(sigs[1:] - sigs[:-1]) | ||
if torch.all(change < early_stopping_threshold): | ||
custom_logger.info("Early stopping criteria met." ) | ||
return sigs[:len(change) + 1].to(device) | ||
|
||
if torch.isnan(sigs).any() or torch.isinf(sigs).any(): | ||
raise ValueError("Invalid sigma values detected (NaN or Inf).") | ||
|
||
return sigs.to(device) |
Oops, something went wrong.