Skip to content

kaist-dmlab/MQNet

Repository files navigation

Meta-Query-Net: Resolving Purity-Informativeness Dilemma in Open-set Active Learning (NeurIPS 2022, PDF)

by Dongmin Park1, Yooju Shin1, Jihwan Bang2,3, Youngjun Lee, Hwanjun Song2, Jae-Gil Lee1

1 KAIST, 2 NAVER AI Lab, 3 NAVER CLOVA

  • Oct 19, 2022: Our work is publicly available at ArXiv.
  • Dec 28, 2022: Our work is published in NeurIPS 2022.

How to run

MQ-Net

  • CIFAR10
python3 main_split.py --epochs 200 --epochs-csi 1000 --epochs-mqnet 100 --datset 'CIFAR10' --n-class 10 --n-query 500 \
                      --method 'MQNet' --mqnet-mode 'LL' --ssl-save True --ood-rate 0.6
  • CIFAR100
python3 main_split.py --epochs 200 --epochs-csi 1000 --epochs-mqnet 100 --datset 'CIFAR100' --n-class 100 --n-query 500 \
                      --method 'MQNet' --mqnet-mode 'LL' --ssl-save True --ood-rate 0.6
  • ImageNet50
python3 main_split.py --epochs 200 --epochs-csi 1000 --epochs-mqnet 100 --datset 'ImageNet50' --n-class 50 --n-query 1000 \
                      --method 'MQNet' --mqnet-mode 'LL' --ssl-save True --ood-rate 0.6
  • For ease of expedition, we provide CSI pre-trained models for split-experiment below
Noise Ratio Architecture CIFAR10 CIFAR100
60% ResNet18 weights weights

Other Baselines: Uncertainty(CONF), CoreSet, LL, BADGE, CCAL, SIMILAR

  • CIFAR10, CIFAR100, ImageNet50
python3 main_split.py --epochs 200 --datset $dataset --n-query $num_query --method $al_algorithm --ood-rate $ood_rate

Requirements

torch: +1.3.0
torchvision: 1.7.0
torchlars: 0.1.2
prefetch_generator: 1.0.1
submodlib: 1.1.5
diffdist: 0.1
scikit-learn: 0.24.2
scipy: 1.5.4

MQ-Net Overview

Importance of Handling OOD examples in Active Learning

  • OOD examples are uncertain in prediction & diverse in representation space
  • They are Likely to be queried by standard AL algorithms, e.g., uncertainty- and diversity-based
  • Since OOD examples are useless for target task, it wastes the labeling cost and significantly degrades AL performance

  • Above figures are AL performance on CIFAR10 mixed with SVHN at the open-set noise ratio of 50% (1:1 mixing)
  • With a such high noise ratio, uncertainty- and diversity-based algorithms queried many OOD examples and thus become even worse than random selection

Purity-Informativeness Dilemma in Open-set Active Learning

  • Recently, two open-set AL algorithms, SIMILAR and CCAL, have been proposed and tried to increase in-distribution purity of query-set
  • However, "Should we focus on the purity throughout the entire AL period?" remains a question

  • Increasing purity ↔ Losing Informativeness --> Trade-off!
  • Which is more helpful? Fewer but more informative examples vs More but less informative examples
  • Optimal trade-off may change according to the AL rounds & noise ratios!

MQ-Net

  • Goal: To keep finding the best balance between purity and informativeness
  • How: Learn a meta query score function

Result

Citation

@article{park2022meta,
  title={Meta-Query-Net: Resolving Purity-Informativeness Dilemma in Open-set Active Learning},
  author={Park, Dongmin and Shin, Yooju and Bang, Jihwan and Lee, Youngjun and Song, Hwanjun and Lee, Jae-Gil},
  journal={NeurIPS 2022},
  year={2022}
}

References

  • Coreset [code] : Active Learning for Convolutional Neural Networks: A Core-Set Approach, Sener et al. 2018 ICLR
  • LL [code] : Learning Loss for Active Learning, Yoo et al. 2019 CVPR
  • BADGE [code] : Deep Batch Active Learning by Diverse, Uncertain Gradient Lower Bounds, Jordan et al. 2020 ICLR
  • CCAL [code] : Contrastive Coding for Active Learning under Class Distribution Mismatch, Du et al. 2021 ICCV
  • SIMILAR [code] : SIMILAR: Submodular Information Measures based Active Learning in Realistic Scenarios, Kothawade et al. 2021 NeurIPS

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages