Developed by Kosei Ohara
MIM v-2024 is a modernized version of MIM. This program is based on MIM v0.35
-
INPUT
- INPUT_UVT_FILENAME
Optional
File name of the u (zonal wind [$\mathrm{m\:s^{-1}}$ ]), v (meridional wind [$\mathrm{m\:s^{-1}}$ ]), and t (temperature [$\mathrm{K}$ ]) on the pressure surfaces. Their order must be u → v → t. - INPUT_U_FILENAME
Optional
File name of the zonal wind [$\mathrm{m\:s^{-1}}$ ] on the pressure surfaces. This file is needed ifINPUT_UVT_FILENAME
is not specified. If the data is from JRA3-3Q,anl_p125_ugrd
. - INPUT_V_FILENAME
Optional
File name of the meridional wind [$\mathrm{m\:s^{-1}}$ ] on the pressure surfaces. This file is needed ifINPUT_UVT_FILENAME
is not specified. If the data is from JRA3-3Q,anl_p125_vgrd
. - INPUT_T_FILENAME
Optional
File name of the temperature [$\mathrm{K}$ ] on the pressure surfaces. This file is needed ifINPUT_UVT_FILENAME
is not specified. If the data is from JRA3-3Q,anl_p125_tmp
. - INPUT_PS_FILENAME
Optional
File name of the surface pressure [$\mathrm{Pa}$ ] / [$\mathrm{hPa}$ ]. If the data is from JRA3-3Q,anl_surf125-PRES
. - INPUT_MSL_FILENAME
Optional
File name of the mean sea level pressure [$\mathrm{Pa}$ ] / [$\mathrm{hPa}$ ]. This file is needed ifINPUT_PS_FILENAME
is not specified. If the data is from JRA3-3Q,anl_surf125-PRMSL
. - INPUT_TS_FILENAME
Optional
File name of the surface temperature [$\mathrm{K}$ ]. This file is needed ifINPUT_PS_FILENAME
is not specified. If the data is from JRA3-3Q,anl_surf125-TMP
. - INPUT_Z_FILENAME
Required
File name of the height [$\mathrm{m}$ ] or geopotential height [$\mathrm{m^2\:s^{-2}}$ ] on the pressure surfaces. If the data is from JRA3-3Q,anl_p125_hgt
. - INPUT_OMEGA_FILENAME
Optional
File name of the vertical velocity [$\mathrm{Pa \: s^{-1}}$ ]. If not specified, omega will be estimated from the continuity equation. If the data is from JRA3-3Q,anl_p125_vvel
. - INPUT_TOPO_FILENAME
Required
File name of the topography [$\mathrm{m}$ ] / [$\mathrm{m^2 \: s^{-1}}$ ]. If the data is from JRA3-3Q,LL125_surf
. - INPUT_Q_FILENAME
Optional
File name of the total diabatic heating [$\mathrm{K \: s^{-1}}$ ] / [$\mathrm{K \: day^{-1}}$ ]. If not specified, total diabatic heating is defied by the sum of diabatic heating by the short wave, long wave, large scale condensation, convective heating, and vertical diffusion. If one of them is not specified too, the diabatic heating will be estimated from the time derivative of the potential temperature. - INPUT_SHORTWAVE_FILENAME
Optional
File name of the diabatic heating by the short wave radiation [$\mathrm{K \: s^{-1}}$ ] / [$\mathrm{K \: day^{-1}}$ ]. If not specified, outputs related to the short wave radiation will be zero. If the data is from JRA3-3Q,fcst_phyp125_ttswr
. - INPUT_LONGWAVE_FILENAME
Optional
File name of the diabatic heating by the long wave radiation [$\mathrm{K \: s^{-1}}$ ] / [$\mathrm{K \: day^{-1}}$ ]. If not specified, outputs related to the long wave radiation will be zero. If the data is from JRA3-3Q,fcst_phyp125_ttlwr
. - INPUT_LHR_LARGE_FILENAME
Optional
File name of the diabatic heating by the large scale condensation [$\mathrm{K \: s^{-1}}$ ] / [$\mathrm{K \: day^{-1}}$ ]. If not specified, outputs related to the large scale condensation will be zero. If the data is from JRA3-3Q,fcst_phyp125_lrghr
. - INPUT_LHR_CONV_FILENAME
Optional
File name of the diabatic heating by the convective heating [$\mathrm{K \: s^{-1}}$ ] / [$\mathrm{K \: day^{-1}}$ ]. If not specified, outputs related to the convective heating will be zero. If the data is from JRA3-3Q,fcst_phyp125_cnvhr
. - INPUT_DIFFUSION_FILENAME
Optional
File name of the diabatic heating by the vertical diffusion [$\mathrm{K \: s^{-1}}$ ] / [$\mathrm{K \: day^{-1}}$ ]. If not specified, outputs related to the vertical diffusion will be zero. If the data is from JRA3-3Q,fcst_phyp125_vdfhr
.
- INPUT_UVT_FILENAME
-
INPUT_UNIT
- INPUT_UNIT_Z
Optional (default :"m"
)
Unit of the data specified inINPUT_Z_FILENAME
."m"
if the data unit is [$\mathrm{m}$ ] and"m^2/s^2"
if [$\mathrm{m^2 \: s^{-2}}$ ] - INPUT_UNIT_PS
Optional (default :"hPa"
)
Unit of the data specified inINPUT_PS_FILENAME
."hPa"
or"Pa"
. - INPUT_UNIT_MSL
Optional (default :"hPa"
)
Unit of the data specified inINPUT_MSL_FILENAME
."hPa"
or"Pa"
. - INPUT_UNIT_TOPO
Optional (default :"m"
)
Unit of the data specified inINPUT_TOPO_FILENAME
."m"
if the data unit is [$\mathrm{m}$ ] and"m^2/s^2"
if [$\mathrm{m^2 \: s^{-2}}$ ]. - INPUT_UNIT_Q
Optional (defalt :"K/s"
)
Unit of the data specified inINPUT_Q_FILENAME
and the other datasets related to the diabatic heating."K/s"
if the data unit is [$\mathrm{K \: s^{-1}}$ ] and"K/day"
if [$\mathrm{K \: day^{-1}}$ ].
- INPUT_UNIT_Z
-
INPUT_UNDEF
The value for the undefined grids. The default value is9.999E+20
. IfINPUT_UNDEF_DEFAULT
is specified by another value, the undefined values in all files will be overwritten. However, if an undefined value has been individually specified for a particular dataset with a value other than9.999E+20
, that dataset will retain its unique undefined value.- INPUT_UNDEF_DEFAULT
- INPUT_UNDEF_UVT
- INPUT_UNDEF_U
- INPUT_UNDEF_V
- INPUT_UNDEF_T
- INPUT_UNDEF_PS
- INPUT_UNDEF_MSL
- INPUT_UNDEF_TS
- INPUT_UNDEF_Z
- INPUT_UNDEF_OMEGA
- INPUT_UNDEF_Q
- INPUT_UNDEF_SHORTWAVE
- INPUT_UNDEF_LONGWAVE
- INPUT_UNDEF_LHR_LARGE
- INPUT_UNDEF_LHR_CONV
- INPUT_UNDEF_DIFFUSION
-
INPUT_ENDIAN
The endian for the input files."native"
,"little_endian"
, and"big_endian"
are valid. if"native"
, the endian is determined by the compiler option or the environment. If the endian for each file is not specified individually, it followsINPUT_ENDIAN_DEFAULT
.- INPUT_ENDIAN_DEFAULT
- INPUT_ENDIAN_UVT
- INPUT_ENDIAN_U
- INPUT_ENDIAN_V
- INPUT_ENDIAN_T
- INPUT_ENDIAN_PS
- INPUT_ENDIAN_MSL
- INPUT_ENDIAN_TS
- INPUT_ENDIAN_Z
- INPUT_ENDIAN_OMEGA
- INPUT_ENDIAN_TOPO
- INPUT_ENDIAN_Q
- INPUT_ENDIAN_SHORTWAVE
- INPUT_ENDIAN_LONGWAVE
- INPUT_ENDIAN_LHR_LARGE
- INPUT_ENDIAN_LHR_CONV
- INPUT_ENDIAN_DIFFUSION
-
INPUT_XDEF
- INPUT_XDEF_NUM
Required
Number of grids in x (longitudinal) direction.
- INPUT_XDEF_NUM
-
INPUT_YDEF
- INPUT_YDEF_TYPE
Required
"lat_degree"
,"lat_radian"
, and"linear"
are valid. If specified by"lat_degree"
, the latitude of each grid is determined byINPUT_YDEF_LEVEL
and its unit is[degree]
. If"lat_radian"
, same as"lat_degree"
, but its unit is[radian]
. If"linear"
, the latitude is determined byINPUT_YDEF_NORTH
,INPUT_YDEF_SOUTH
, andINPUT_YDEF_NUM
linearly. - INPUT_YDEF_NUM
Required
Number of grids in y (latitudinal) direction. - INPUT_TDEF_LEVEL
Optional
Latitudes of the grids. Both north → south and south → north orders are valid. Latitudes are determined only ifINPUT_YDEF_TYPE
is"lat_degree"
or"lat_radian"
. - INPUT_YDEF_SOUTH
Optional
The latitude of the southern edge[degree]
. This value is needed only ifINPUT_YDEF_TYPE="linear"
. - INPUT_YDEF_NORTH
Optional
The latitude of the northern edge[degree]
. This value is needed only ifINPUT_YDEF_TYPE="linear"
. - INPUT_YDEF_YREV_DEFAULT
Optional (default :.False.
)
.True.
and.False.
are valid. If the input files are north → south (yrev), specify.True.
If south → north, specify.False.
- INPUT_YDEF_YREV_TOPO
Optional (default :.False.
)
Same asINPUT_YDF_YREV_DEFAULT
, but this option is for the topography file.
- INPUT_YDEF_TYPE
-
INPUT_ZDEF
- INPUT_ZDEF_NUM
Required
Number of levels. - INPUT_ZDEF_LEVEL
Required
Pressure of each surface[hPa]
. Both upper → lower and lower → upper are valid. - INPUT_ZDEF_ZREV
Optional (default :.False.
)
.True.
and.False.
are valid. If the input files are upper → lower (zrev), specify.True.
If lower → upper, specify.False.
- INPUT_ZDEF_NUM
-
INPUT_TDEF
- INPUT_TDEF_TYPE
Required
"tstep"
,"monthly"
, and"annual"
are valid. If specified by"tstep"
, number of time steps is defined byINPUT_TDEF_TSTEP
. If"monthly"
, number of time steps is defined byINPUT_TDEF_YEAR
,INPUT_TDEF_MONTH
,INPUT_TDEF_365DAY
, andINPUT_TDEF_DAYNUM
."monthly"
options is used to compute only for one month. If"annual"
, number of time steps is defined byINPUT_TDEF_YEAR
,INPUT_TDEF_365DAY
, andINPUT_TDEF_DAYNUM
."annual"
options is used to compute only for one year. - INPPUT_TDEF_INITIAL
Required
Date and time of the initial time step. This parameter will be used to generate GrADS Control files. The format have to be hhZddmmyyyy, such as"00Z01JAN2000"
. No validations will be executed for this parameter. - INPUT_TDEF_DAYNUM
Requied
Number of time steps in each day. - INPUT_TDEF_TSTEP
Optional
Total number of time steps for the period of data analysis. Valid ifINPUT_TDEF_TYPE="tstep"
. - INPUT_TDEF_YEAR
Optional
The year of the input data. Valid ifINPUT_TDEF_TYPE
is"monthly"
or"annual"
. - INPUT_TDEF_MONTH
Optional
The month of the input data. Valid ifINPUT_TDEF_TYPE="monthly"
. - INPUT_TDEF_365DAY
Required
0
if leap year is assumed,1
if not assumed.
- INPUT_TDEF_TYPE
-
WAVE
- WAVE_MAX_NUMBER
Optional
Maxumum wavenumber for the spectral expansion of the form drag. Valid ifOUTPUT_WAVE_FILENAME
is specified.
- WAVE_MAX_NUMBER
-
OUTPUT
- OUTPUT_ZONAL_FILENAME
Optional
File name of the output zonal file. If specified, latitude-height crosssection zonal mean field will be output. - OUTPUT_VINT_FILENAME
Optional
File name of the output vint file. If specified, vertically integrated parameters will be output. - OUTPUT_GMEAN_FILENAME
Optional
File name of the output gmean file. If specified, global mean parameters will be output. - OUTPUT_WAVE_FILENAME
Optional
File name of the output wave file. If specified, the Form-Drag expanded in wavenumber will be output. - OUTPUT_ERROR_FILENAME
Required
File name of the output error file. Error of parameters will be output. - OUTPUT_WARN_FILENAME
Required
File name of the output warning file. Various warning will be output. - OUTPUT_ENDIAN
Optional
Endian of output files."LITTLE_ENDIAN"
or"BIG_ENDIAN"
."LITTLE_ENDIAN"
is the default.
- OUTPUT_ZONAL_FILENAME
-
OUTPUT_ZDEF
- OUTPUT_ZDEF_NUM
Required
Same asINPUT_ZDEF_NUM
, but for the output. This value does not necessarily have to be equal toINPUT_ZDEF_NUM
, however, specifying by the same value is strongly recommended to avoid crucial errors. - OUTPUT_ZDEF_LEVEL
Required
Same asINPUT_ZDEF_LEVEL
, but for the output. This levels does not necessarily have to be equal toINPUT_ZDEF_LEVEL
, however, specifying by the same value is strongly recommended to avoid crucial errors.
- OUTPUT_ZDEF_NUM
Most settings should be applied in the namelists. To optimize your requirement, edit the source codes.
- Numerical Precision
To change the numerical precision, editsrc/params.f90
.kp
is the kind parameter for real variables:kp=4
for single precison,kp=8
for double precision, andkp=16
for quadruple precision. Similarly,ckp
is the kind parameter for complex variables.rkp
andwkp
are kind parameters for input parameters and output parameters, respectively. For example, to read 8 byte real data and compute in double precision, setrkp=8
,kp=8
, andckp=8
. Executemake re
to recomplie all source code. - Output Parameters
In the default source, the program outputs many parameters. To limit the outputs, editio_main.f90
.write_zonal()
,write_vint()
,write_gmean()
, andwrite_wave()
are subroutines for output.
Depending on the setting in the namelist, the program can generate 4 files. 4 are binary files, and the other is ASCII file. The endian of the binary files depends on your environment.
Latitude-pressure crosssection data. The latitude of each grid is determined by the input files. The levels depends on OUTPUT_ZDEF_LEVEL. The data are yrev. 68 parameters are output.
- u
Zonal mean zonal wind [$\mathrm{m \: s^{-1}}$ ]. - v
Zonal mean meridional wind [$\mathrm{m \: s^{-1}}$ ]. - pt
Potential temperature [$\mathrm{K}$ ]. - t
Temperature in the zonal mean state [$\mathrm{K}$ ]. - st
Mass streamfunction [$\mathrm{kg \: s^{-1}}$ ]. - w
Zonal mean vetical wind [$\mathrm{m \: s^{-1}}$ ]. This parameter is computed from the mass streamfunction. - z
Zonal mean geopotential height [$\mathrm{m}$ ]. - epy
Meridional component of the EP flux [$\mathrm{kg \: s^{-2}}$ ]. - depy
Meridional divergence of the EP flux [$\mathrm{m \: s^{-2}}$ ]. - epz_form
Form Drag (One term of the vertical component of the EP flux) [$\mathrm{kg \: s^{-2}}$ ]. - depz_form
Vertical divergence of the Form Drag [$\mathrm{m \: s^{-2}}$ ]. - epz_uv
uv term of the vertical component of the EP flux [$\mathrm{kg \: s^{-2}}$ ]. - depz_uv
Vertical divergence of epz_uv [$\mathrm{m \: s^{-2}}$ ]. - epz_ut
ut term of the vertical component of the EP flux [$\mathrm{kg \: s^{-2}}$ ]. - depz_ut
Vertical divergence of epz_ut [$\mathrm{m \: s^{-2}}$ ]. - epz
Vertical component of the EP flux (sum of epz_form, epz_uv, and epz_ut). - depz
Vertical divergence of the EP flux. - divf
Divergence of the EP flux. - gy
Meridional component of the G flux [$\mathrm{kg \: s^{-2}}$ ]. - dgy
Meridional divergence of the G flux [$\mathrm{m \: s^{-2}}$ ]. - gz
Vertical component of the G flux [$\mathrm{kg \: s^{-2}}$ ]. - dgz
Vertical divergence of the G flux [$\mathrm{m \: s^{-2}}$ ]. - uux
Zonal mean of the square of the eddy zonal wind [$\mathrm{m^2 \: s^{-2}}$ ]. - c_az_kz
Energy conversion from the zonal available potential energy to the zonal mean kinetic energy [$\mathrm{m^2 \: s^{-3}}$ ]. - c_kz_ae_u
Energy conversion from the zonal mean kinetic energy to the eddy available potential energy by the zonal wind [$\mathrm{m^2 \: s^{-3}}$ ]. - c_kz_ae_v
Energy conversion from the zonal mean kinetic energy to the eddy available potential energy by the meridional wind [$\mathrm{m^2 \: s^{-3}}$ ]. - c_kz_ae
Total energy conversion from the zonal mean kinetic energy to the eddy available potential energy [$\mathrm{m^2 \: s^{-3}}$ ]. - c_ae_ke_u
Energy conversion from the eddy available potential energy to the eddy kinetic energy by the eddy zonal wind [$\mathrm{m^2 \: s^{-3}}$ ]. - c_ae_ke_v
Energy conversion from the eddy available potential energy to the eddy kinetic energy by the eddy meridional wind [$\mathrm{m^2 \: s^{-3}}$ ]. - c_ae_ke
Total energy conversion from the eddy available potential energy to the eddy kinetic energy [$\mathrm{m^2 \: s^{-3}}$ ]. - c_kz_ke_uy
Energy conversion from the zonal mean kinetic energy to the eddy kinetic energy by the zonal mean zonal wind and the meridional divergence of the EP flux [$\mathrm{m^2 \: s^{-3}}$ ]. - c_kz_ke_uz
Energy conversion from the zonal mean kinetic energy to the eddy kinetic energy by the zonal mean zonal wind and the depz_uw [$\mathrm{m^2 \: s^{-3}}$ ]. - c_kz_ke_vy
Energy conversion from the zonal mean kinetic energy to the eddy kinetic energy by the zonal mean meridional wind and the meridional divergence of the G flux [$\mathrm{m^2 \: s^{-3}}$ ]. - c_kz_ke_vz
Energy conversion from the zonal mean kinetic energy to the eddy kinetic energy by the zonal mean meridional wind and the vertical divergence of the G flux [$\mathrm{m^2 \: s^{-3}}$ ]. - c_kz_ke_tan
Energy conversion from the zonal mean kinetic energy to the eddy kinetic energy by the zonal mean meridional wind and the square of the eddy zonal wind [$\mathrm{m^2 \: s^{-3}}$ ]. - c_kz_ke
Total energy conversion from the zonal mean kinetic energy to the eddy kinetic energy [$\mathrm{m^2 \: s^{-3}}$ ]. - c_kz_w
Energy conversion from the zonal mean kinetic energy to the wave energy (sum of c_kz_ke and c_kz_ae) [$\mathrm{m^2 \: s^{-3}}$ ]. - q
Zonal mean diabatic heating [$\mathrm{m^2 \: s^{-3}}$ ]. - shortwave
Zonal mean diabatic heating by the short wave [$\mathrm{m^2 \: s^{-3}}$ ]. - longwave
Zonal mean diabatic heating by the long wave [$\mathrm{m^2 \: s^{-3}}$ ]. - lhr_large
Zonal mean diabatic heating by the large scale condensation [$\mathrm{m^2 \: s^{-3}}$ ]. - lhr_conv
Zonal mean diabatic heating by the convective heating [$\mathrm{m^2 \: s^{-3}}$ ]. - diffusion
Zonal mean diabatic heating by the vertical diffusion [$\mathrm{m^2 \: s^{-3}}$ ]. - qgz
Generation rate to the zonal mean state [$\mathrm{m^2 \: s^{-3}}$ ]. - qgz_shortwave
Generation rate to the zonal mean state by the short wave radiation [$\mathrm{m^2 \: s^{-3}}$ ]. - qgz_longwave
Generation rate to the zonal mean state by the long wave radiation [$\mathrm{m^2 \: s^{-3}}$ ]. - qgz_lhr_large
Generation rate to the zonal mean state by the large scale condensation [$\mathrm{m^2 \: s^{-3}}$ ]. - qgz_lhr_conv
Generation rate to the zonal mean state by the convective heating [$\mathrm{m^2 \: s^{-3}}$ ]. - qgz_diffusion
Generation rate to the zonal mean state by the vertical diffusion [$\mathrm{m^2 \: s^{-3}}$ ]. - qe
Eddy generation rate [$\mathrm{m^2 \: s^{-3}}$ ]. - qe_shortwave
Eddy generation rate by the short wave radiation [$\mathrm{m^2 \: s^{-3}}$ ]. - qe_longwave
Eddy generation rate by the long wave radiation [$\mathrm{m^2 \: s^{-3}}$ ]. - qe_lhr_large
Eddy generation rate by the large scale condensation [$\mathrm{m^2 \: s^{-3}}$ ]. - qe_lhr_conv
Eddy generation rate by the convective heating [$\mathrm{m^2 \: s^{-3}}$ ]. - qe_diffusion
Eddy generation rate by the vertical diffusion [$\mathrm{m^2 \: s^{-3}}$ ]. - kz
Zonal mean kinetic energy [$\mathrm{m^2 \: s^{-2}}$ ]. - ke
Eddy kinetic energy [$\mathrm{m^2 \: s^{-2}}$ ]. - pz
Zonal potential energy (NOT the available potential energy) [$\mathrm{m^2 \: s^{-2}}$ ]. - ae
Eddy available potential energy [$\mathrm{m^2 \: s^{-2}}$ ]. - dkzdt_vkz
Advection of the zonal mean kinetic energy by the meridional wind [$\mathrm{m^2 \: s^{-3}}$ ]. - dkzdt_wkz
Advection of the zonal mean kinetic energy by the vertical wind [$\mathrm{m^2 \: s^{-3}}$ ]. - dkedt_uy
Divergence of the wave energy flux d(u Fy)/dy [$\mathrm{m^2 \: s^{-3}}$ ]. - dkedt_vy
Divergence of the wave energy flux d(v Gy)/dy [$\mathrm{m^2 \: s^{-3}}$ ]. - dkedt_uz
Divergence of the wave energy flux d(u Fz_uw)/dz [$\mathrm{m^2 \: s^{-3}}$ ]. - dkedt_vz
Divergence of the wave energy flux d(v Gz)/dz [$\mathrm{m^2 \: s^{-3}}$ ]. - dkedt_vke
Advection of the eddy kinetic energy by the meridional wind [$\mathrm{m^2 \: s^{-3}}$ ]. - dkedt_wke
Advection of the eddy kinetic energy by the vertical wind [$\mathrm{m^2 \: s^{-3}}$ ].
Virticaly integrated data (NOT the vertical mean). The latitude of each grid is determined by the input files. Grids under the ground are not used. The data are yrev. 50 parameters are output.
- kz
Zonal mean kinetic energy [$\mathrm{m^2 \: s^{-2}}$ ]. - ke
Eddy kinetic energy [$\mathrm{m^2 \: s^{-2}}$ ]. - az
Zonal available potential energy [$\mathrm{m^2 \: s^{-2}}$ ]. - ae
Eddy available potential energy [$\mathrm{m^2 \: s^{-2}}$ ]. - c_az_kz
Energy conversion from the zonal available potential energy to the zonal mean kinetic energy [$\mathrm{m^2 \: s^{-3}}$ ]. - c_kz_ae_u
Energy conversion from the zonal mean kinetic energy to the eddy available potential energy by the zonal wind [$\mathrm{m^2 \: s^{-3}}$ ]. - c_kz_ae_v
Energy conversion from the zonal mean kinetic energy to the eddy available potential energy by the meridional wind [$\mathrm{m^2 \: s^{-3}}$ ]. - c_kz_ae
Total energy conversion from the zonal mean kinetic energy to the eddy available potential energy [$\mathrm{m^2 \: s^{-3}}$ ]. - c_ae_ke_u
Energy conversion from the eddy available potential energy to the eddy kinetic energy by the eddy zonal wind [$\mathrm{m^2 \: s^{-3}}$ ]. - c_ae_ke_v
Energy conversion from the eddy available potential energy to the eddy kinetic energy by the eddy meridional wind [$\mathrm{m^2 \: s^{-3}}$ ]. - c_ae_ke
Total energy conversion from the eddy available potential energy to the eddy kinetic energy [$\mathrm{m^2 \: s^{-3}}$ ]. - c_kz_ke_uy
Energy conversion from the zonal mean kinetic energy to the eddy kinetic energy by the zonal mean zonal wind and the meridional divergence of the EP flux [$\mathrm{m^2 \: s^{-3}}$ ]. - c_kz_ke_uz
Energy conversion from the zonal mean kinetic energy to the eddy kinetic energy by the zonal mean zonal wind and the depz_uw [$\mathrm{m^2 \: s^{-3}}$ ]. - c_kz_ke_vy
Energy conversion from the zonal mean kinetic energy to the eddy kinetic energy by the zonal mean meridional wind and the meridional divergence of the G flux [$\mathrm{m^2 \: s^{-3}}$ ]. - c_kz_ke_vz
Energy conversion from the zonal mean kinetic energy to the eddy kinetic energy by the zonal mean meridional wind and the vertical divergence of the G flux [$\mathrm{m^2 \: s^{-3}}$ ]. - c_kz_ke_tan
Energy conversion from the zonal mean kinetic energy to the eddy kinetic energy by the zonal mean meridional wind and the square of the eddy zonal wind [$\mathrm{m^2 \: s^{-3}}$ ]. - c_kz_ke
Total energy conversion from the zonal mean kinetic energy to the eddy kinetic energy [$\mathrm{m^2 \: s^{-3}}$ ]. - c_kz_w
Energy conversion from the zonal mean kinetic energy to the wave energy (sum of c_kz_ke and c_kz_ae) [$\mathrm{m^2 \: s^{-3}}$ ]. - q
Zonal mean diabatic heating [$\mathrm{m^2 \: s^{-3}}$ ]. - shortwave
Zonal mean diabatic heating by the short wave [$\mathrm{m^2 \: s^{-3}}$ ]. - longwave
Zonal mean diabatic heating by the long wave [$\mathrm{m^2 \: s^{-3}}$ ]. - lhr_large
Zonal mean diabatic heating by the large scale condensation [$\mathrm{m^2 \: s^{-3}}$ ]. - lhr_conv
Zonal mean diabatic heating by the convective heating [$\mathrm{m^2 \: s^{-3}}$ ]. - diffusion
Zonal mean diabatic heating by the vertical diffusion [$\mathrm{m^2 \: s^{-3}}$ ]. - qgz
Generation rate to the zonal mean state [$\mathrm{m^2 \: s^{-3}}$ ]. - qgz_shortwave
Generation rate to the zonal mean state by the short wave radiation [$\mathrm{m^2 \: s^{-3}}$ ]. - qgz_longwave
Generation rate to the zonal mean state by the long wave radiation [$\mathrm{m^2 \: s^{-3}}$ ]. - qgz_lhr_large
Generation rate to the zonal mean state by the large scale condensation [$\mathrm{m^2 \: s^{-3}}$ ]. - qgz_lhr_conv
Generation rate to the zonal mean state by the convective heating [$\mathrm{m^2 \: s^{-3}}$ ]. - qgz_diffusion
Generation rate to the zonal mean state by the vertical diffusion [$\mathrm{m^2 \: s^{-3}}$ ]. - qe
Eddy generation rate [$\mathrm{m^2 \: s^{-3}}$ ]. - qe_shortwave
Eddy generation rate by the short wave radiation [$\mathrm{m^2 \: s^{-3}}$ ]. - qe_longwave
Eddy generation rate by the long wave radiation [$\mathrm{m^2 \: s^{-3}}$ ]. - qe_lhr_large
Eddy generation rate by the large scale condensation [$\mathrm{m^2 \: s^{-3}}$ ]. - qe_lhr_conv
Eddy generation rate by the convective heating [$\mathrm{m^2 \: s^{-3}}$ ]. - qe_diffusion
Eddy generation rate by the vertical diffusion [$\mathrm{m^2 \: s^{-3}}$ ]. - qz
Zonal generation rate [$\mathrm{m^2 \: s^{-3}}$ ]. - qz_shortwave
Zonal generation rate by the short wave radiation [$\mathrm{m^2 \: s^{-3}}$ ]. - qz_longwave
Zonal generation rate by the long wave radiation [$\mathrm{m^2 \: s^{-3}}$ ]. - qz_lhr_large
Zonal generation rate by the large scale condensation [$\mathrm{m^2 \: s^{-3}}$ ]. - qz_lhr_conv
Zonal generation rate by the convective heating [$\mathrm{m^2 \: s^{-3}}$ ]. - qz_diffusion
Zonal generation rate by the vertical diffusion [$\mathrm{m^2 \: s^{-3}}$ ]. - dkzdt_vkz
Advection of the zonal mean kinetic energy by the meridional wind [$\mathrm{m^2 \: s^{-3}}$ ]. - dkzdt_wkz
Advection of the zonal mean kinetic energy by the vertical wind [$\mathrm{m^2 \: s^{-3}}$ ]. - dkedt_uy
Divergence of the wave energy flux d(u Fy)/dy [$\mathrm{m^2 \: s^{-3}}$ ]. - dkedt_vy
Divergence of the wave energy flux d(v Gy)/dy [$\mathrm{m^2 \: s^{-3}}$ ]. - dkedt_uz
Divergence of the wave energy flux d(u Fz_uw)/dz [$\mathrm{m^2 \: s^{-3}}$ ]. - dkedt_vz
Divergence of the wave energy flux d(v Gz)/dz [$\mathrm{m^2 \: s^{-3}}$ ]. - dkedt_vke
Advection of the eddy kinetic energy by the meridional wind [$\mathrm{m^2 \: s^{-3}}$ ]. - dkedt_wke
Advection of the eddy kinetic energy by the vertical wind [$\mathrm{m^2 \: s^{-3}}$ ].
- az
Zonal available potential energy [$\mathrm{m^2 \: s^{-2}}$ ]. - qz
Zonal generation rate [$\mathrm{m^2 \: s^{-3}}$ ]. - qz_shortwave
Zonal generation rate by the short wave radiation [$\mathrm{m^2 \: s^{-3}}$ ]. - qz_longwave
Zonal generation rate by the long wave radiation [$\mathrm{m^2 \: s^{-3}}$ ]. - qz_lhr_large
Zonal generation rate by the large scale condensation [$\mathrm{m^2 \: s^{-3}}$ ]. - qz_lhr_conv
Zonal generation rate by the convective heating [$\mathrm{m^2 \: s^{-3}}$ ]. - qz_diffusion
Zonal generation rate by the vertical diffusion [$\mathrm{m^2 \: s^{-3}}$ ].