注 #1:
main
分支要用 rust stable,rustc 1.49.0 (e1884a8e3 2020-12-29)
来编译。
而rust-nightly-2020-10-05
分支则要用 rust nightly,rustc 1.49.0-nightly (beb5ae474 2020-10-04)
来编译。
请学员们根据自身编译环境选择。 谢谢 @腾龙-开发-北京 的改良建议
- 还是先过一下理论作铺垫
- Substrate 里其中两处用到密码学的地方是它的 哈希方法 和 钥匙对的生成和使用。
pub OwnedKitties get(fn owned_kitties): map hasher(blake2_128_concat)
(T::AccountId, Option<T::KittyIndex>) => Option<KittyLinkedItem<T>>;
- 这个
blake2_128_concat
是用作从后面的参数,指定怎样生成成键 (key) 的方法。它是一个密码学的生成方法。
这些方法需要有三个特质:
- 不容易从观察 生成后结果 倒推回 生成前参数。
- 如果 生成前参数 不一样,生成后结果 也不容易有重覆。但如果生成前是同一个参数,则要生成出一样的结果。
- 生成前参数 如果有一丁点的改变,也会导致到 生成后结果 很大的改变。
而现在 map
键生成的方法支持:
-
identity
: 对参数不作加密处理,直接拿作键值用。通常这是用在键参数不是用户控制的值上的。 -
twox_64_concat
: 优点是非常的快 及支持 map 可遍历它的所有键,缺点是密码学上 "不是绝对安全"。 -
blake2_128_concat
: 优点是密码学上相对安全,也支持该 map 可遍历它的所有键,缺点是需要一定计算量,相较 #2 较慢。
如果你们不知道选谁最合适,就选 #3 吧 😁
参考:
- https://substrate.dev/rustdocs/v2.0.0/frame_support/macro.decl_storage.html
- https://substrate.dev/docs/en/knowledgebase/advanced/cryptography
- https://wiki.polkadot.network/docs/en/learn-cryptography
- 在 Substrate, 所有钥匙对的实例都得实践
Pair
trait
Substrate 支持三种钥匙生成及签名法
ECDSA
: 基于 secp256k1 曲线的ECDSA
签名算法
- Bitcoin 和 Ethereum 都是用这钥匙生成及签名法
- 参考 secp256k1 曲线
- 参考 ECDSA 签名算法
Ed25519
: 基于 25519 曲线 (Curve25519) 的EdDSA
签名算法
SR25519
: 基于受过 Ristretto 压缩法 (那个R
) 的 25519 曲线 的 Schnorrkel 签名算法 (那个S
)
- 好处 1: 基于
Ed25519
再作了一些安全性的改良。把 25519 曲线的一些隐患解决掉。也是 Substrate 默认开帐号时用的方法 - 好处 2: 有更好的 key 的 路径支持 (hierarchical deterministic key derivations)
- 好处 3: 本身支持集成多签名
- 参考 Polkadot wiki: sr25519
- 参考 Polkadot wiki: keypairs
-
链上 runtime 逻辑有以下限制:
- 所有计算不能占时太长,不然影响出块时间
- 不能做没有绝对结果 (deterministic) 的操作。比如说发一个 http 请求。因为:1)有时可能会失败。2) 返回的结果不会时时都一样。
- 最好不要占太多链上存储。因为每个数据都得重覆一篇存在每个节点上。
-
所以衍生出链下工作机 (off-chain worker), 简称 ocw.
-
ocw 有以下特质:
-
它适合作什么?
- 计算量大的工作
- 没有绝对结果的操作
- 有一些需要缓存数据的计算 (利用上 ocw 的单节点存储)
以下开始进入编程环节,讲代码。大家可 git clone advance-lecture-04-ocw. 跟着一起跑。我也是讲里面的内容。成功编译后跑起来会是这样的:
https://www.awesomescreenshot.com/video/2423609?key=a190e0063aab700d8354e78f2d5db9a9
首先从 pallets/ocw-demo/src
谈起。
触发 ocw,一个区块生成 (称作 block import) 有三个阶段
- 区块初始化 (block initialization)
- 跑链上逻辑
- 区块最终化 (block finalization)
参考 rustdoc
你们定义的 pallet 都有 OnInitialize, 及 OnFinalize 函数可供设定回调
完成一次区块生成后,就会调用以下 ocw 入口。
fn offchain_worker(block_number: T::BlockNumber) {
debug::info!("Entering off-chain worker");
// ...
}
接下来我们可用三种交易方法把计算结果写回链上:
- 签名交易
- 不签名交易
- 不签名交易但有签名数据
主要看代码里: Self::offchain_signed_tx(block_number)
-
先从新定义一个用来签名的钥匙
pub const KEY_TYPE: KeyTypeId = KeyTypeId(*b"demo"); pub mod crypto { use crate::KEY_TYPE; use sp_runtime::app_crypto::{app_crypto, sr25519}; // -- snip -- app_crypto!(sr25519, KEY_TYPE); }
-
你的 pallet Trait 也需要加多一个约束
CreateSignedTransaction
:pub trait Trait: system::Trait + CreateSignedTransaction<Call<Self>> { /// The identifier type for an offchain worker. type AuthorityId: AppCrypto<Self::Public, Self::Signature>; /// The overarching dispatch call type. type Call: From<Call<Self>>; /// The overarching event type. type Event: From<Event<Self>> + Into<<Self as system::Trait>::Event>; }
-
看看在 runtime 里是如何实现这个 pallet 的:
runtimes/src/lib.rs
impl pallet_ocw_demo::Trait for Runtime { type AuthorityId = pallet_ocw_demo::crypto::TestAuthId; type Call = Call; type Event = Event; } impl<LocalCall> frame_system::offchain::CreateSignedTransaction<LocalCall> for Runtime where Call: From<LocalCall>, { fn create_transaction<C: frame_system::offchain::AppCrypto<Self::Public, Self::Signature>>( call: Call, public: <Signature as traits::Verify>::Signer, account: AccountId, index: Index, ) -> Option<(Call, <UncheckedExtrinsic as traits::Extrinsic>::SignaturePayload)> { let period = BlockHashCount::get() as u64; let current_block = System::block_number() .saturated_into::<u64>() .saturating_sub(1); let tip = 0; let extra: SignedExtra = ( frame_system::CheckSpecVersion::<Runtime>::new(), frame_system::CheckTxVersion::<Runtime>::new(), frame_system::CheckGenesis::<Runtime>::new(), frame_system::CheckEra::<Runtime>::from(generic::Era::mortal(period, current_block)), frame_system::CheckNonce::<Runtime>::from(index), frame_system::CheckWeight::<Runtime>::new(), pallet_transaction_payment::ChargeTransactionPayment::<Runtime>::from(tip), ); let raw_payload = SignedPayload::new(call, extra) .map_err(|e| { debug::warn!("SignedPayload error: {:?}", e); }) .ok()?; let signature = raw_payload.using_encoded(|payload| C::sign(payload, public))?; let address = account; let (call, extra, _) = raw_payload.deconstruct(); Some((call, (multiaddress::MultiAddress::Id(address), signature.into(), extra))) } } impl frame_system::offchain::SigningTypes for Runtime { type Public = <Signature as traits::Verify>::Signer; type Signature = Signature; } impl<C> frame_system::offchain::SendTransactionTypes<C> for Runtime where Call: From<C>, { type OverarchingCall = Call; type Extrinsic = UncheckedExtrinsic; }
-
在
node/src/service.rs
加 keystore 一段keystore.write().insert_ephemeral_from_seed_by_type::<runtime::pallet_ocw_demo::crypto::Pair>( "//Alice", runtime::pallet_ocw_demo::KEY_TYPE ).expect("Creating key with account Alice should succeed.");
-
接下来看
fn offchain_signed_tx
内的函数fn offchain_signed_tx(block_number: T::BlockNumber) -> Result<(), Error<T>> { // We retrieve a signer and check if it is valid. // Since this pallet only has one key in the keystore. We use `any_account()1 to // retrieve it. If there are multiple keys and we want to pinpoint it, `with_filter()` can be chained, // ref: https://substrate.dev/rustdocs/v2.0.0/frame_system/offchain/struct.Signer.html let signer = Signer::<T, T::AuthorityId>::any_account(); // Translating the current block number to number and submit it on-chain let number: u32 = block_number.try_into().unwrap_or(0); // `result` is in the type of `Option<(Account<T>, Result<(), ()>)>`. It is: // - `None`: no account is available for sending transaction // - `Some((account, Ok(())))`: transaction is successfully sent // - `Some((account, Err(())))`: error occured when sending the transaction let result = signer.send_signed_transaction(|_acct| // This is the on-chain function Call::submit_number_signed(number) ); // Display error if the signed tx fails. if let Some((acc, res)) = result { if res.is_err() { debug::error!("failure: offchain_signed_tx: tx sent: {:?}", acc.id); return Err(<Error<T>>::OffchainSignedTxError); } // Transaction is sent successfully return Ok(()); } // The case of `None`: no account is available for sending debug::error!("No local account available"); Err(<Error<T>>::NoLocalAcctForSigning) }
-
调用
SubmitTransaction::<T, Call<T>>::submit_unsigned_transaction
看
pallets/ocw-demo/src/lib.rs
fn offchain_unsigned_tx(block_number: T::BlockNumber) -> Result<(), Error<T>> { let number: u32 = block_number.try_into().unwrap_or(0); let call = Call::submit_number_unsigned(number); // `submit_unsigned_transaction` returns a type of `Result<(), ()>` // ref: https://substrate.dev/rustdocs/v2.0.0/frame_system/offchain/struct.SubmitTransaction.html#method.submit_unsigned_transaction SubmitTransaction::<T, Call<T>>::submit_unsigned_transaction(call.into()) .map_err(|_| { debug::error!("Failed in offchain_unsigned_tx"); <Error<T>>::OffchainUnsignedTxError }) }
-
默认不具签名的交易是会被拒绝的。所以需要一个函数定明我们的自定义核对逻辑并批准这函数通过。
看
pallets/ocw-demo/src/lib.rs
impl<T: Trait> frame_support::unsigned::ValidateUnsigned for Module<T> { type Call = Call<T>; fn validate_unsigned(_source: TransactionSource, call: &Self::Call) -> TransactionValidity { let valid_tx = |provide| ValidTransaction::with_tag_prefix("ocw-demo") .priority(UNSIGNED_TXS_PRIORITY) .and_provides([&provide]) .longevity(3) .propagate(true) .build(); match call { Call::submit_number_unsigned(_number) => valid_tx(b"submit_number_unsigned".to_vec()), Call::submit_number_unsigned_with_signed_payload(ref payload, ref signature) => { if !SignedPayload::<T>::verify::<T::AuthorityId>(payload, signature.clone()) { return InvalidTransaction::BadProof.into(); } valid_tx(b"submit_number_unsigned_with_signed_payload".to_vec()) }, _ => InvalidTransaction::Call.into(), } } }
看 offchain_unsigned_tx_signed_payload
#[derive(Encode, Decode, Clone, PartialEq, Eq, RuntimeDebug)]
pub struct Payload<Public> {
number: u32,
public: Public
}
// ...
fn offchain_unsigned_tx_signed_payload(block_number: T::BlockNumber) -> Result<(), Error<T>> {
// Retrieve the signer to sign the payload
let signer = Signer::<T, T::AuthorityId>::any_account();
let number: u32 = block_number.try_into().unwrap_or(0);
// `send_unsigned_transaction` is returning a type of `Option<(Account<T>, Result<(), ()>)>`.
// Similar to `send_signed_transaction`, they account for:
// - `None`: no account is available for sending transaction
// - `Some((account, Ok(())))`: transaction is successfully sent
// - `Some((account, Err(())))`: error occured when sending the transaction
if let Some((_, res)) = signer.send_unsigned_transaction(
|acct| Payload { number, public: acct.public.clone() },
Call::submit_number_unsigned_with_signed_payload
) {
return res.map_err(|_| {
debug::error!("Failed in offchain_unsigned_tx_signed_payload");
<Error<T>>::OffchainUnsignedTxSignedPayloadError
});
}
// The case of `None`: no account is available for sending
debug::error!("No local account available");
Err(<Error<T>>::NoLocalAcctForSigning)
}
主要我们定义了 Payload
这个结构体。
为什么会有 不签名但具签名信息的交易? 因为很多时候签名交易意味签名者需要为该交易付手续费。但有些情况你想知道该交易来源是谁,但不需要该用户付手续费。
接下来我们从 github 那里获取 Substrate 开发者中心的数据。这要用上 http request 和 解析 JSON 的能力。
pub const HTTP_REMOTE_REQUEST: &str = "https://api.github.com/orgs/substrate-developer-hub";
pub const HTTP_HEADER_USER_AGENT: &str = "jimmychu0807";
#[derive(Deserialize, Encode, Decode, Default)]
struct GithubInfo {
// Specify our own deserializing function to convert JSON string to vector of bytes
#[serde(deserialize_with = "de_string_to_bytes")]
login: Vec<u8>,
#[serde(deserialize_with = "de_string_to_bytes")]
blog: Vec<u8>,
public_repos: u32,
}
pub fn de_string_to_bytes<'de, D>(de: D) -> Result<Vec<u8>, D::Error>
where
D: Deserializer<'de>,
{
let s: &str = Deserialize::deserialize(de)?;
Ok(s.as_bytes().to_vec())
}
fn fetch_n_parse() -> Result<GithubInfo, Error<T>> {
let resp_bytes = Self::fetch_from_remote().map_err(|e| {
debug::error!("fetch_from_remote error: {:?}", e);
<Error<T>>::HttpFetchingError
})?;
let resp_str = str::from_utf8(&resp_bytes).map_err(|_| <Error<T>>::HttpFetchingError)?;
// Print out our fetched JSON string
debug::info!("{}", resp_str);
// Deserializing JSON to struct, thanks to `serde` and `serde_derive`
let gh_info: GithubInfo =
serde_json::from_str(&resp_str).map_err(|_| <Error<T>>::HttpFetchingError)?;
Ok(gh_info)
}
fn fetch_from_remote() -> Result<Vec<u8>, Error<T>> {
debug::info!("sending request to: {}", HTTP_REMOTE_REQUEST);
// Initiate an external HTTP GET request. This is using high-level wrappers from `sp_runtime`.
let request = rt_offchain::http::Request::get(HTTP_REMOTE_REQUEST);
// Keeping the offchain worker execution time reasonable, so limiting the call to be within 3s.
let timeout = sp_io::offchain::timestamp()
.add(rt_offchain::Duration::from_millis(FETCH_TIMEOUT_PERIOD));
// For github API request, we also need to specify `user-agent` in http request header.
// See: https://developer.github.com/v3/#user-agent-required
let pending = request
.add_header("User-Agent", HTTP_HEADER_USER_AGENT)
.deadline(timeout) // Setting the timeout time
.send() // Sending the request out by the host
.map_err(|_| <Error<T>>::HttpFetchingError)?;
// By default, the http request is async from the runtime perspective. So we are asking the
// runtime to wait here.
// The returning value here is a `Result` of `Result`, so we are unwrapping it twice by two `?`
// ref: https://substrate.dev/rustdocs/v2.0.0/sp_runtime/offchain/http/struct.PendingRequest.html#method.try_wait
let response = pending
.try_wait(timeout)
.map_err(|_| <Error<T>>::HttpFetchingError)?
.map_err(|_| <Error<T>>::HttpFetchingError)?;
if response.code != 200 {
debug::error!("Unexpected http request status code: {}", response.code);
return Err(<Error<T>>::HttpFetchingError);
}
// Next we fully read the response body and collect it to a vector of bytes.
Ok(response.body().collect::<Vec<u8>>())
}
- 其实解析 JSON 也不太难,用
serde
库就是了 - 不过 cargo 有一个问题,我们 runtime 里有 serde, 并且会编译支持
std
, 所以现在如果在ocw-demo
pallet 用同一个 serde 就会自动支持std
(详细解释在这 github issue)。 - 所以同一个套代码,在 cargo crate 上命名为
alt_serde
// ref: https://serde.rs/container-attrs.html#crate
#[derive(Deserialize, Encode, Decode, Default)]
struct GithubInfo {
// Specify our own deserializing function to convert JSON string to vector of bytes
#[serde(deserialize_with = "de_string_to_bytes")]
login: Vec<u8>,
#[serde(deserialize_with = "de_string_to_bytes")]
blog: Vec<u8>,
public_repos: u32,
}
pub fn de_string_to_bytes<'de, D>(de: D) -> Result<Vec<u8>, D::Error>
where
D: Deserializer<'de>,
{
let s: &str = Deserialize::deserialize(de)?;
Ok(s.as_bytes().to_vec())
}
fn fetch_github_info() -> Result<(), Error<T>> {
// Create a reference to Local Storage value.
// Since the local storage is common for all offchain workers, it's a good practice
// to prepend our entry with the pallet name.
let s_info = StorageValueRef::persistent(b"offchain-demo::gh-info");
// Local storage is persisted and shared between runs of the offchain workers,
// offchain workers may run concurrently. We can use the `mutate` function to
// write a storage entry in an atomic fashion.
//
// With a similar API as `StorageValue` with the variables `get`, `set`, `mutate`.
// We will likely want to use `mutate` to access
// the storage comprehensively.
//
// Ref: https://substrate.dev/rustdocs/v2.0.0/sp_runtime/offchain/storage/struct.StorageValueRef.html
if let Some(Some(gh_info)) = s_info.get::<GithubInfo>() {
// gh-info has already been fetched. Return early.
debug::info!("cached gh-info: {:?}", gh_info);
return Ok(());
}
// Since off-chain storage can be accessed by off-chain workers from multiple runs, it is important to lock
// it before doing heavy computations or write operations.
// ref: https://substrate.dev/rustdocs/v2.0.0-rc3/sp_runtime/offchain/storage_lock/index.html
//
// There are four ways of defining a lock:
// 1) `new` - lock with default time and block exipration
// 2) `with_deadline` - lock with default block but custom time expiration
// 3) `with_block_deadline` - lock with default time but custom block expiration
// 4) `with_block_and_time_deadline` - lock with custom time and block expiration
// Here we choose the most custom one for demonstration purpose.
let mut lock = StorageLock::<BlockAndTime<Self>>::with_block_and_time_deadline(
b"offchain-demo::lock", LOCK_BLOCK_EXPIRATION,
rt_offchain::Duration::from_millis(LOCK_TIMEOUT_EXPIRATION)
);
// We try to acquire the lock here. If failed, we know the `fetch_n_parse` part inside is being
// executed by previous run of ocw, so the function just returns.
// ref: https://substrate.dev/rustdocs/v2.0.0/sp_runtime/offchain/storage_lock/struct.StorageLock.html#method.try_lock
if let Ok(_guard) = lock.try_lock() {
match Self::fetch_n_parse() {
Ok(gh_info) => { s_info.set(&gh_info); }
Err(err) => { return Err(err); }
}
}
Ok(())
}
-
首先,打开 rustdoc 文档
-
它是作为一个 validator 发一次心跳 (heartbeat) 出去给其他 validators。证明自己在该 era 里自己是在线的。如果一个 validator 在一个 era 里一次心跳都没有,则会被视作不在线,而自己的质押也会有惩罚。
-
他的心跳是用 offchain worker 的 不签名但具签名信息的交易 (unsigned transaction with signed payload) 来完成的。
代码:
- L#107 - 140: 载入这个 pallet 的签名
- L#153 - 228: 定义不同的结构体,和 enum 错误
- L#230 - 260: 该 pallet 的
Trait
(最新 Substrate 改了名称叫 Config, 因为我们全称这个东西为 pallet configurable trait). Runtime 在实现这个 pallet 时需要实现这个 trait。 - L#277 - 306: pallet 的存储
- L#308 - 316: pallet 回传山来外部的错误信息
- 主要逻辑: offchain_worker 入口
- L#372 - L#394: `fn offchain_worker`
- L#455 - L#476: `Self::send_heartbeats`
- L#479 - L#530: `Self::send_heartbeat`, 留意用了 `submit_unsigned_transaction`. 回调 `Call::heartbeat`
- L#339 - 369: 回看
Call::heartbeat
是做什么 - 也看 runtime 怎样实现 pallet_im_online,
substrate/runtime/src/lib.rs
的 L#809 - 816
以 lecture-demo
作基础,把它拷到 assignment
目录里来修改,最后提交这个代码库。
利用 offchain worker 取出 DOT 当前对 USD 的价格,并把写到一个 Vec 的存储里,你们自己选一种方法提交回链上,并在代码注释为什么用这种方法提交回链上最好。只保留当前最近的 10 个价格,其他价格可丢弃 (就是 Vec 的长度长到 10 后,这时再插入一个值时,要先丢弃最早的那个值)。
这个 http 请求可得到当前 DOT 价格:https://api.coincap.io/v2/assets/polkadot。