Skip to content

Commit

Permalink
Improve global bootstrap optimizer configuration
Browse files Browse the repository at this point in the history
Currently global bootstrap uses "accuracy" in several different ways:
* For all parameters passed to LevenbergMarquardt.
* For all epsilon parameters passed to EndCriteria.
* As the upper bound on the final value of the cost function.

This overloading makes it quite inflexible. Instead:
* Allow passing optimizer and EndCriteria to the constructor, which
  allows full control over all parameters.
* Instead of checking the final value of the cost function, check the
  result type from the optimizer.

Also, cleanup LevenbergMarquardt optimizer: remove commented out code,
fix parameters passed to MINPACK.
  • Loading branch information
eltoder committed Sep 3, 2024
1 parent c0fac24 commit 8c64bf0
Show file tree
Hide file tree
Showing 6 changed files with 81 additions and 55 deletions.
24 changes: 16 additions & 8 deletions ql/math/optimization/endcriteria.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -158,23 +158,31 @@ namespace QuantLib {
return gradientNormEpsilon_;
}

bool EndCriteria::succeeded(EndCriteria::Type ecType) {
return ecType == StationaryPoint ||
ecType == StationaryFunctionValue ||
ecType == StationaryFunctionAccuracy;
}

std::ostream& operator<<(std::ostream& out, EndCriteria::Type ec) {
switch (ec) {
case QuantLib::EndCriteria::None:
case EndCriteria::None:
return out << "None";
case QuantLib::EndCriteria::MaxIterations:
case EndCriteria::MaxIterations:
return out << "MaxIterations";
case QuantLib::EndCriteria::StationaryPoint:
case EndCriteria::StationaryPoint:
return out << "StationaryPoint";
case QuantLib::EndCriteria::StationaryFunctionValue:
case EndCriteria::StationaryFunctionValue:
return out << "StationaryFunctionValue";
case QuantLib::EndCriteria::StationaryFunctionAccuracy:
case EndCriteria::StationaryFunctionAccuracy:
return out << "StationaryFunctionAccuracy";
case QuantLib::EndCriteria::ZeroGradientNorm:
case EndCriteria::ZeroGradientNorm:
return out << "ZeroGradientNorm";
case QuantLib::EndCriteria::Unknown:
case EndCriteria::FunctionEpsilonTooSmall:
return out << "FunctionEpsilonTooSmall";
case EndCriteria::Unknown:
return out << "Unknown";
default:
default:
QL_FAIL("unknown EndCriteria::Type (" << Integer(ec) << ")");
}
}
Expand Down
2 changes: 2 additions & 0 deletions ql/math/optimization/endcriteria.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -45,6 +45,7 @@ namespace QuantLib {
StationaryFunctionValue,
StationaryFunctionAccuracy,
ZeroGradientNorm,
FunctionEpsilonTooSmall,
Unknown};

//! Initialization constructor
Expand Down Expand Up @@ -95,6 +96,7 @@ namespace QuantLib {
/*! Test if the gradient norm value is below gradientNormEpsilon */
bool checkZeroGradientNorm(Real gNorm, EndCriteria::Type& ecType) const;

static bool succeeded(EndCriteria::Type ecType);
protected:
//! Maximum number of iterations
Size maxIterations_;
Expand Down
44 changes: 26 additions & 18 deletions ql/math/optimization/levenbergmarquardt.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -33,13 +33,8 @@ namespace QuantLib {
: epsfcn_(epsfcn), xtol_(xtol), gtol_(gtol),
useCostFunctionsJacobian_(useCostFunctionsJacobian) {}

Integer LevenbergMarquardt::getInfo() const {
return info_;
}

EndCriteria::Type LevenbergMarquardt::minimize(Problem& P,
const EndCriteria& endCriteria) {
EndCriteria::Type ecType = EndCriteria::None;
P.reset();
Array x_ = P.currentValue();
currentProblem_ = &P;
Expand All @@ -55,10 +50,14 @@ namespace QuantLib {
std::unique_ptr<Real[]> fvec(new Real[m]);
std::unique_ptr<Real[]> diag(new Real[n]);
int mode = 1;
Real factor = 1;
// magic number recommended by the documentation
Real factor = 100;
// lmdif() evaluates cost function n+1 times for each iteration (technically, 2n+1
// times if useCostFunctionsJacobian is true, but lmdif() doesn't account for that)
int maxfev = endCriteria.maxIterations() * (n + 1);
int nprint = 0;
int info = 0;
int nfev =0;
int nfev = 0;
std::unique_ptr<Real[]> fjac(new Real[m*n]);
int ldfjac = m;
std::unique_ptr<int[]> ipvt(new int[n]);
Expand All @@ -76,8 +75,7 @@ namespace QuantLib {
"negative f tolerance");
QL_REQUIRE(xtol_ >= 0.0, "negative x tolerance");
QL_REQUIRE(gtol_ >= 0.0, "negative g tolerance");
QL_REQUIRE(endCriteria.maxIterations() > 0,
"null number of evaluations");
QL_REQUIRE(maxfev > 0, "null number of evaluations");

// call lmdif to minimize the sum of the squares of m functions
// in n variables by the Levenberg-Marquardt algorithm.
Expand All @@ -95,30 +93,40 @@ namespace QuantLib {
endCriteria.functionEpsilon(),
xtol_,
gtol_,
endCriteria.maxIterations(),
maxfev,
epsfcn_,
diag.get(), mode, factor,
nprint, &info, &nfev, fjac.get(),
ldfjac, ipvt.get(), qtf.get(),
wa1.get(), wa2.get(), wa3.get(), wa4.get(),
lmdifCostFunction,
lmdifJacFunction);
info_ = info;
// check requirements & endCriteria evaluation
QL_REQUIRE(info != 0, "MINPACK: improper input parameters");
//QL_REQUIRE(info != 6, "MINPACK: ftol is too small. no further "
// "reduction in the sum of squares "
// "is possible.");
if (info != 6) ecType = QuantLib::EndCriteria::StationaryFunctionValue;
//QL_REQUIRE(info != 5, "MINPACK: number of calls to fcn has "
// "reached or exceeded maxfev.");
endCriteria.checkMaxIterations(nfev, ecType);
QL_REQUIRE(info != 7, "MINPACK: xtol is too small. no further "
"improvement in the approximate "
"solution x is possible.");
QL_REQUIRE(info != 8, "MINPACK: gtol is too small. fvec is "
"orthogonal to the columns of the "
"jacobian to machine precision.");

EndCriteria::Type ecType = EndCriteria::None;
switch (info) {
case 1:
case 2:
case 3:
case 4:
// 2 and 3 should be StationaryPoint, 4 a new gradient-related value,
// but we keep StationaryFunctionValue for backwards compatibility.
ecType = EndCriteria::StationaryFunctionValue;
break;
case 5:
ecType = EndCriteria::MaxIterations;
break;
case 6:
ecType = EndCriteria::FunctionEpsilonTooSmall;
break;
}
// set problem
std::copy(xx.get(), xx.get()+n, x_.begin());
P.setCurrentValue(x_);
Expand Down
10 changes: 3 additions & 7 deletions ql/math/optimization/levenbergmarquardt.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,7 @@ namespace QuantLib {
of the problem is used instead. Note that
the default implementation of the jacobian
in CostFunction uses a central difference
(oder 2, but requiring more function
(order 2, but requiring more function
evaluations) compared to the forward
difference implemented here (order 1).
Expand All @@ -53,10 +53,7 @@ namespace QuantLib {
Real gtol = 1.0e-8,
bool useCostFunctionsJacobian = false);
EndCriteria::Type minimize(Problem& P,
const EndCriteria& endCriteria //= EndCriteria()
) override;
// = EndCriteria(400, 1.0e-8, 1.0e-8)
virtual Integer getInfo() const;
const EndCriteria& endCriteria) override;
void fcn(int m,
int n,
Real* x,
Expand All @@ -72,9 +69,8 @@ namespace QuantLib {
Problem* currentProblem_;
Array initCostValues_;
Matrix initJacobian_;
mutable Integer info_ = 0;
const Real epsfcn_, xtol_, gtol_;
bool useCostFunctionsJacobian_;
const bool useCostFunctionsJacobian_;

Check notice on line 73 in ql/math/optimization/levenbergmarquardt.hpp

View check run for this annotation

Codacy Production / Codacy Static Code Analysis

ql/math/optimization/levenbergmarquardt.hpp#L73

class member 'LevenbergMarquardt::useCostFunctionsJacobian_' is never used.
};

}
Expand Down
51 changes: 32 additions & 19 deletions ql/termstructures/globalbootstrap.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,9 @@ template <class Curve> class GlobalBootstrap {
typedef typename Curve::interpolator_type Interpolator; // Linear, LogLinear, ...

public:
GlobalBootstrap(Real accuracy = Null<Real>());
GlobalBootstrap(Real accuracy = Null<Real>(),
ext::shared_ptr<OptimizationMethod> optimizer = nullptr,
ext::shared_ptr<EndCriteria> endCriteria = nullptr);
/*! The set of (alive) additional dates is added to the interpolation grid. The set of additional dates must only
depend on the current global evaluation date. The additionalErrors functor must yield at least as many values
such that
Expand All @@ -61,14 +63,18 @@ template <class Curve> class GlobalBootstrap {
GlobalBootstrap(std::vector<ext::shared_ptr<typename Traits::helper> > additionalHelpers,
std::function<std::vector<Date>()> additionalDates,
std::function<Array()> additionalErrors,
Real accuracy = Null<Real>());
Real accuracy = Null<Real>(),
ext::shared_ptr<OptimizationMethod> optimizer = nullptr,
ext::shared_ptr<EndCriteria> endCriteria = nullptr);
void setup(Curve *ts);
void calculate() const;

private:
void initialize() const;
Curve *ts_;
Real accuracy_;
ext::shared_ptr<OptimizationMethod> optimizer_;
ext::shared_ptr<EndCriteria> endCriteria_;
mutable std::vector<ext::shared_ptr<typename Traits::helper> > additionalHelpers_;
std::function<std::vector<Date>()> additionalDates_;
std::function<Array()> additionalErrors_;
Expand All @@ -80,15 +86,23 @@ template <class Curve> class GlobalBootstrap {
// template definitions

template <class Curve>
GlobalBootstrap<Curve>::GlobalBootstrap(Real accuracy) : ts_(0), accuracy_(accuracy) {}
GlobalBootstrap<Curve>::GlobalBootstrap(
Real accuracy,
ext::shared_ptr<OptimizationMethod> optimizer,
ext::shared_ptr<EndCriteria> endCriteria)
: ts_(nullptr), accuracy_(accuracy), optimizer_(std::move(optimizer)),
endCriteria_(std::move(endCriteria)) {}

template <class Curve>
GlobalBootstrap<Curve>::GlobalBootstrap(
std::vector<ext::shared_ptr<typename Traits::helper> > additionalHelpers,
std::function<std::vector<Date>()> additionalDates,
std::function<Array()> additionalErrors,
Real accuracy)
: ts_(nullptr), accuracy_(accuracy), additionalHelpers_(std::move(additionalHelpers)),
Real accuracy,
ext::shared_ptr<OptimizationMethod> optimizer,
ext::shared_ptr<EndCriteria> endCriteria)
: ts_(nullptr), accuracy_(accuracy), optimizer_(std::move(optimizer)),
endCriteria_(std::move(endCriteria)), additionalHelpers_(std::move(additionalHelpers)),
additionalDates_(std::move(additionalDates)), additionalErrors_(std::move(additionalErrors)) {}

template <class Curve> void GlobalBootstrap<Curve>::setup(Curve *ts) {
Expand All @@ -98,6 +112,15 @@ template <class Curve> void GlobalBootstrap<Curve>::setup(Curve *ts) {
for (Size j = 0; j < additionalHelpers_.size(); ++j)
ts_->registerWithObservables(additionalHelpers_[j]);

// setup optimizer and EndCriteria
Real accuracy = accuracy_ != Null<Real>() ? accuracy_ : ts_->accuracy_;
if (!optimizer_) {
optimizer_ = ext::make_shared<LevenbergMarquardt>(accuracy, accuracy, accuracy);
}
if (!endCriteria_) {
endCriteria_ = ext::make_shared<EndCriteria>(1000, 10, accuracy, accuracy, accuracy);
}

// do not initialize yet: instruments could be invalid here
// but valid later when bootstrapping is actually required
}
Expand Down Expand Up @@ -213,13 +236,6 @@ template <class Curve> void GlobalBootstrap<Curve>::calculate() const {
helper->setTermStructure(const_cast<Curve *>(ts_));
}

Real accuracy = accuracy_ != Null<Real>() ? accuracy_ : ts_->accuracy_;

// setup optimizer and EndCriteria
Real optEps = accuracy;
LevenbergMarquardt optimizer(optEps, optEps, optEps); // FIXME hardcoded tolerances
EndCriteria ec(1000, 10, optEps, optEps, optEps); // FIXME hardcoded values here as well

// setup interpolation
if (!validCurve_) {
ts_->interpolation_ =
Expand Down Expand Up @@ -302,14 +318,11 @@ template <class Curve> void GlobalBootstrap<Curve>::calculate() const {
Problem problem(cost, noConstraint, guess);

// run optimization
optimizer.minimize(problem, ec);

// evaluate target function on best value found to ensure that data_ contains the optimal value
Real finalTargetError = cost.value(problem.currentValue());
EndCriteria::Type endType = optimizer_->minimize(problem, *endCriteria_);

// check final error
QL_REQUIRE(finalTargetError <= accuracy,
"global bootstrap failed, error is " << finalTargetError << ", accuracy is " << accuracy);
// check the end criteria
QL_REQUIRE(EndCriteria::succeeded(endType),
"global bootstrap failed to minimize to required accuracy: " << endType);

// set valid flag
validCurve_ = true;
Expand Down
5 changes: 2 additions & 3 deletions ql/termstructures/localbootstrap.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -240,9 +240,8 @@ namespace QuantLib {
EndCriteria::Type endType = solver.minimize(toSolve, endCriteria);

// check the end criteria
QL_REQUIRE(endType == EndCriteria::StationaryFunctionAccuracy ||
endType == EndCriteria::StationaryFunctionValue,
"Unable to strip yieldcurve to required accuracy " );
QL_REQUIRE(EndCriteria::succeeded(endType),
"Unable to strip yieldcurve to required accuracy: " << endType);
++iInst;
} while ( iInst < nInsts );
validCurve_ = true;
Expand Down

0 comments on commit 8c64bf0

Please sign in to comment.