Skip to content
This repository has been archived by the owner on Jul 24, 2024. It is now read-only.

[Merged by Bors] - feat(analysis/locally_convex): locally convex hausdorff spaces #17937

Closed
wants to merge 19 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
19 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
80 changes: 80 additions & 0 deletions src/analysis/locally_convex/with_seminorms.lean
Original file line number Diff line number Diff line change
Expand Up @@ -283,12 +283,92 @@ lemma with_seminorms.with_seminorms_eq {p : seminorm_family 𝕜 E ι} [t : topo
variables [topological_space E]
variables {p : seminorm_family 𝕜 E ι}

lemma with_seminorms.topological_add_group (hp : with_seminorms p) : topological_add_group E :=
begin
rw hp.with_seminorms_eq,
exact add_group_filter_basis.is_topological_add_group _
end

lemma with_seminorms.has_basis (hp : with_seminorms p) : (𝓝 (0 : E)).has_basis
(λ (s : set E), s ∈ p.basis_sets) id :=
begin
rw (congr_fun (congr_arg (@nhds E) hp.1) 0),
exact add_group_filter_basis.nhds_zero_has_basis _,
end

lemma with_seminorms.has_basis_zero_ball (hp : with_seminorms p) : (𝓝 (0 : E)).has_basis
(λ sr : finset ι × ℝ, 0 < sr.2) (λ sr, (sr.1.sup p).ball 0 sr.2) :=
begin
refine ⟨λ V, _⟩,
LukasMias marked this conversation as resolved.
Show resolved Hide resolved
simp only [hp.has_basis.mem_iff, seminorm_family.basis_sets_iff, prod.exists],
split,
{ rintros ⟨-, ⟨s, r, hr, rfl⟩, hV⟩,
exact ⟨s, r, hr, hV⟩ },
{ rintros ⟨s, r, hr, hV⟩,
exact ⟨_, ⟨s, r, hr, rfl⟩, hV⟩ }
end

lemma with_seminorms.has_basis_ball (hp : with_seminorms p) {x : E} : (𝓝 (x : E)).has_basis
(λ sr : finset ι × ℝ, 0 < sr.2) (λ sr, (sr.1.sup p).ball x sr.2) :=
begin
haveI : topological_add_group E := hp.topological_add_group,
rw [← map_add_left_nhds_zero],
convert (hp.has_basis_zero_ball.map ((+) x)),
ext sr : 1,
have : (sr.fst.sup p).ball (x +ᵥ 0) sr.snd = x +ᵥ (sr.fst.sup p).ball 0 sr.snd
:= eq.symm (seminorm.vadd_ball (sr.fst.sup p)),
rwa [vadd_eq_add, add_zero] at this,
end

/-- The `x`-neighbourhoods of a space whose topology is induced by a family of seminorms
are exactly the sets which contain seminorm balls around `x`.-/
lemma with_seminorms.mem_nhds_iff (hp : with_seminorms p) (x : E) (U : set E) :
U ∈ nhds x ↔ ∃ (s : finset ι) (r > 0), (s.sup p).ball x r ⊆ U :=
mcdoll marked this conversation as resolved.
Show resolved Hide resolved
LukasMias marked this conversation as resolved.
Show resolved Hide resolved
by rw [hp.has_basis_ball.mem_iff, prod.exists]

/-- The open sets of a space whose topology is induced by a family of seminorms
are exactly the sets which contain seminorm balls around all of their points.-/
lemma with_seminorms.is_open_iff_mem_balls (hp : with_seminorms p) (U : set E) :
is_open U ↔ ∀ x ∈ U, ∃ (s : finset ι) (r > 0), (s.sup p).ball x r ⊆ U :=
by simp_rw [←with_seminorms.mem_nhds_iff hp _ U, is_open_iff_mem_nhds]

/- Note that through the following lemmas, one also immediately has that separating families
of seminorms induce T₂ and T₃ topologies by `topological_add_group.t2_space`
and `topological_add_group.t3_space` -/
/-- A separating family of seminorms induces a T₁ topology. -/
lemma with_seminorms.t1_of_separating (hp : with_seminorms p) (h : ∀ x ≠ 0, ∃ i, p i x ≠ 0) :
t1_space E :=
begin
haveI := hp.topological_add_group,
refine topological_add_group.t1_space _ _,
rw [← is_open_compl_iff, hp.is_open_iff_mem_balls],
rintros x (hx : x ≠ 0),
cases h x hx with i pi_nonzero,
refine ⟨{i}, p i x, by positivity, subset_compl_singleton_iff.mpr _⟩,
rw [finset.sup_singleton, mem_ball, zero_sub, map_neg_eq_map, not_lt]
end

/-- A family of seminorms inducing a T₁ topology is separating. -/
lemma with_seminorms.separating_of_t1 [t1_space E] (hp : with_seminorms p) (x : E) (hx : x ≠ 0) :
∃ i, p i x ≠ 0 :=
begin
have := ((t1_space_tfae E).out 0 9).mp infer_instance,
by_contra' h,
refine hx (this _),
rw hp.has_basis_zero_ball.specializes_iff,
rintros ⟨s, r⟩ (hr : 0 < r),
simp only [ball_finset_sup_eq_Inter _ _ _ hr, mem_Inter₂, mem_ball_zero, h, hr, forall_true_iff],
end

/-- A family of seminorms is separating iff it induces a T₁ topology. -/
lemma with_seminorms.separating_iff_t1 (hp : with_seminorms p) :
(∀ x ≠ 0, ∃ i, p i x ≠ 0) ↔ t1_space E :=
begin
refine ⟨with_seminorms.t1_of_separating hp, _⟩,
introI,
exact with_seminorms.separating_of_t1 hp,
end

end topology

section topological_add_group
Expand Down
21 changes: 21 additions & 0 deletions src/analysis/seminorm.lean
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@ Authors: Jean Lo, Yaël Dillies, Moritz Doll
import data.real.pointwise
import analysis.convex.function
import analysis.locally_convex.basic
import analysis.normed.group.add_torsor

/-!
# Seminorms
Expand Down Expand Up @@ -609,6 +610,26 @@ begin
exact (map_add_le_add p _ _).trans (add_le_add hy₁ hy₂)
end

lemma sub_mem_ball (p : seminorm 𝕜 E) (x₁ x₂ y : E) (r : ℝ) :
x₁ - x₂ ∈ p.ball y r ↔ x₁ ∈ p.ball (x₂ + y) r :=
by simp_rw [mem_ball, sub_sub]

/-- The image of a ball under addition with a singleton is another ball. -/
lemma vadd_ball (p : seminorm 𝕜 E) :
x +ᵥ p.ball y r = p.ball (x +ᵥ y) r :=
begin
letI := add_group_seminorm.to_seminormed_add_comm_group p.to_add_group_seminorm,
exact vadd_ball x y r,
end

/-- The image of a closed ball under addition with a singleton is another closed ball. -/
lemma vadd_closed_ball (p : seminorm 𝕜 E) :
x +ᵥ p.closed_ball y r = p.closed_ball (x +ᵥ y) r :=
begin
letI := add_group_seminorm.to_seminormed_add_comm_group p.to_add_group_seminorm,
exact vadd_closed_ball x y r,
end

end has_smul

section module
Expand Down