Skip to content

Keras Tutorial @ PyData Florence 2017

Compare
Choose a tag to compare
@leriomaggio leriomaggio released this 22 Aug 12:18
· 24 commits to master since this release

Deep Learning with Keras and Tensorflow

PyData Florence 2016 Logo

Valerio Maggio: PostDoc Data Scientist @ FBK/MPBA

Contacts:

@leriomaggio [email protected]

Library Versions

import keras
print('keras: ', keras.__version__)

# optional
import theano
print('Theano: ', theano.__version__)

import tensorflow as tf
print('Tensorflow: ', tf.__version__)
keras:  2.0.2
Theano:  0.9.0
Tensorflow:  1.0.1

Outline at a glance

  • Part I: Introduction to ANN using Tensorflow and Keras

    • naive pure-Python implementation
    • fast forward, sgd, backprop
    • Model + SGD using Tensorflow
    • Introduction to Keras main features
      • keras.layers.core.Dense
      • keras.backend
      • Multi-Layer Perceptron and Fully Connected Networks
  • Part II: Supervised Learning and Convolutional Neural Nets

    • Intro: Focus on Image Classification
    • Intro to ConvNets
    • Advanced CNN
      • Dropout
      • MaxPooling
      • Batch Normalisation
    • Famous Models in Keras
      (ref: keras.applications)
    • Transfer Learning
  • Part III: Unsupervised Learning

    • AutoEncoders
    • word2vec & doc2vec (gensim) & keras.datasets
      • Embedding
  • Part IV: Additional Materials

    • Recurrent Neural Networks: RNN, LSTM, GRU
    • HandsOn: IMDB
    • Multi-Input/Multi-Output Network Topologies