Keras Tutorial @ PyData Florence 2017
·
24 commits
to master
since this release
Deep Learning with Keras and Tensorflow
![](https://raw.githubusercontent.com/leriomaggio/deep-learning-keras-tensorflow/master/imgs/releases/keras-tensorflow-logo.jpg)
Valerio Maggio: PostDoc Data Scientist @ FBK/MPBA
Contacts:
![]() |
![]() |
Library Versions
import keras
print('keras: ', keras.__version__)
# optional
import theano
print('Theano: ', theano.__version__)
import tensorflow as tf
print('Tensorflow: ', tf.__version__)
keras: 2.0.2
Theano: 0.9.0
Tensorflow: 1.0.1
Outline at a glance
-
Part I: Introduction to ANN using Tensorflow and Keras
- naive pure-Python implementation
- fast forward, sgd, backprop
- Model + SGD using Tensorflow
- Introduction to Keras main features
keras.layers.core.Dense
keras.backend
- Multi-Layer Perceptron and Fully Connected Networks
-
Part II: Supervised Learning and Convolutional Neural Nets
- Intro: Focus on Image Classification
- Intro to ConvNets
- Advanced CNN
- Dropout
- MaxPooling
- Batch Normalisation
- Famous Models in Keras
(ref:keras.applications
) - Transfer Learning
-
Part III: Unsupervised Learning
- AutoEncoders
- word2vec & doc2vec (gensim) &
keras.datasets
Embedding
-
Part IV: Additional Materials
- Recurrent Neural Networks: RNN, LSTM, GRU
- HandsOn: IMDB
- Multi-Input/Multi-Output Network Topologies