This is official implementation for paper DENet: Disentangled Embedding Network for Visible Watermark Removal [AAAI2023 Oral]
|--data
|--|--LOGO
|--|--10kmid
|--|--10kgray
|--|--10khigh
PSNR | SSIM | LPIPS | |
---|---|---|---|
LOGO-L | 44.24 | 0.9954 | 0.54 |
LOGO-H | 40.83 | 0.9919 | 0.89 |
LOGO-Gray | 42.60 | 0.9944 | 0.53 |
pip install -r requirements.txt
bash scripts/train_contrast_attention_on_logo_high.sh
bash scripts/train_contrast_attention_on_logo_mid.sh
bash scripts/train_contrast_attention_on_logo_gray.sh
bash scripts/test_LOGO_10khigh.sh
bash scripts/test_LOGO_10kmid.sh
bash scripts/test_LOGO_10kgray.sh
This code is mainly based on the previous work SLBR.