Skip to content
/ SEIL Public
forked from SaulBatman/SEIL

ICRA 2023: SEIL: Simulation-augmented Equivariant Imitation Learning

Notifications You must be signed in to change notification settings

llee-bdai/SEIL

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ICRA2023 SEIL: Simulation-augmented Equivariant Imitation Learning

drawing

Instruction

  1. Clone this repo
git clone https://github.com/SaulBatman/SEIL.git
cd SEIL && pip install -r requirements.txt
  1. Clone environment repo and export PYTHONPATH
git clone https://github.com/SaulBatman/BulletArm.git -b ibc
export PYTHONPATH=$PYTHONPATH:/YOURPATH/BulletArm/
  1. Run simulation experiments in Block in Bowl
cd SEIL/scripts
# run SEIL
python main.py --env=close_loop_block_in_bowl --model=equi_d
# run CNN w/ TS
python main.py --env=close_loop_block_in_bowl --model=cnn
# run equivariant BC
python main.py --env=close_loop_block_in_bowl --model=equi_d --simulate_n=0
# run CNN baseline
python main.py --env=close_loop_block_in_bowl --model=cnn --simulate_n=0
# run implicit BC baseline
python main.py --env=close_loop_block_in_bowl --model=ibc --simulate_n=0
  1. Run real-world experiments in Block in Bowl after unzip data into /scripts/buffer(dataset link)
cd SEIL/scripts
# run SEIL
python main.py --env=real_close_loop_block_in_bowl --model=equi_d --load_buffer=/YOURPATH/SEIL/scripts/buffer/bowl.npy
# run CNN baseline
python main.py --env=real_close_loop_block_in_bowl --model=cnn --load_buffer=/YOURPATH/SEIL/scripts/buffer/bowl.npy
# run implicit BC baseline
python main.py --env=real_close_loop_block_in_bowl --model=ibc --load_buffer=/YOURPATH/SEIL/scripts/buffer/bowl.npy

Note

  • All saved models and parameters are defaultly saved in YOURPATH/SEIL/scripts/outputs
  • There are other choices of environments (replace --env=close_loop_block_in_bowl):
    --env=close_loop_block_stacking
    --env=close_loop_shoe_packing
    --env=close_loop_drawer_opening
    
  • You can select number of demonstrations by adding the following argument (DEFAULT=10):
    --planner_episode=INT_NUM
    
  • To visualize a real-time pybullet renderer by adding the following argument:
    --render=t
    
  • If you are using your own real-world data, please make sure that transition simulation has the access to your point-cloud-to-image projection function.

About

ICRA 2023: SEIL: Simulation-augmented Equivariant Imitation Learning

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%