-
Notifications
You must be signed in to change notification settings - Fork 12.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[mlir] Allow multi-result ops in reshape fusion #108576
Merged
Merged
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
@llvm/pr-subscribers-mlir @llvm/pr-subscribers-mlir-linalg Author: None (Max191) ChangesFusion of reshapes by collapsing patterns were restricted to single result operations, but the implementation supports multi result ops. This PR removes the restriction, since it is not necessary. Full diff: https://github.com/llvm/llvm-project/pull/108576.diff 2 Files Affected:
diff --git a/mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp b/mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp
index c818675993c2c3..a934e47794051c 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp
@@ -1254,7 +1254,7 @@ static SmallVector<ReassociationIndices>
getCollapsableIterationSpaceDims(GenericOp genericOp, OpOperand *fusableOperand,
ArrayRef<ReassociationIndices> reassociation) {
// Some basic checks for this fusion to be valid.
- if (!genericOp.hasPureTensorSemantics() || genericOp.getNumDpsInits() != 1)
+ if (!genericOp.hasPureTensorSemantics())
return {};
if (!llvm::all_of(genericOp.getIndexingMapsArray(), [](AffineMap map) {
diff --git a/mlir/test/Dialect/Linalg/fuse-with-reshape-by-collapsing.mlir b/mlir/test/Dialect/Linalg/fuse-with-reshape-by-collapsing.mlir
index 600f0dea31f4a8..f17881d59a266e 100644
--- a/mlir/test/Dialect/Linalg/fuse-with-reshape-by-collapsing.mlir
+++ b/mlir/test/Dialect/Linalg/fuse-with-reshape-by-collapsing.mlir
@@ -7,49 +7,55 @@
#map1 = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7) -> (d0, d1, d2)>
#map2 = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7) -> (d3, d4, d5, d6)>
#map3 = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7) -> (d0, d1, d2, d3, d4, d5, d6, d7)>
+#map4 = affine_map<(d0, d1, d2, d3, d4, d5, d6, d7) -> (d1, d2, d0, d7, d3, d4, d5, d6)>
func.func @fuse_by_collapsing(%arg0 : tensor<2x12x5x336x9xi32>,
- %arg1 : tensor<2x3x4xi32>, %arg2 : tensor<5x6x7x8xi32>) -> tensor<2x3x4x5x6x7x8x9xi32> {
+ %arg1 : tensor<2x3x4xi32>, %arg2 : tensor<5x6x7x8xi32>) -> (tensor<2x3x4x5x6x7x8x9xi32>, tensor<3x4x2x9x5x6x7x8xi32>) {
%expand = tensor.expand_shape %arg0 [[0], [1, 2], [3], [4, 5, 6], [7]] output_shape [2, 3, 4, 5, 6, 7, 8, 9] : tensor<2x12x5x336x9xi32> into tensor<2x3x4x5x6x7x8x9xi32>
- %init = tensor.empty() : tensor<2x3x4x5x6x7x8x9xi32>
- %generic = linalg.generic {
- indexing_maps = [#map0, #map1, #map2, #map3],
+ %init_0 = tensor.empty() : tensor<2x3x4x5x6x7x8x9xi32>
+ %init_1 = tensor.empty() : tensor<3x4x2x9x5x6x7x8xi32>
+ %generic:2 = linalg.generic {
+ indexing_maps = [#map0, #map1, #map2, #map3, #map4],
iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel", "parallel", "parallel", "parallel"]}
ins(%expand, %arg1, %arg2 : tensor<2x3x4x5x6x7x8x9xi32>, tensor<2x3x4xi32>, tensor<5x6x7x8xi32>)
- outs(%init : tensor<2x3x4x5x6x7x8x9xi32>) {
- ^bb0(%b0 : i32, %b1 : i32, %b2 : i32, %b3 : i32):
+ outs(%init_0, %init_1 : tensor<2x3x4x5x6x7x8x9xi32>, tensor<3x4x2x9x5x6x7x8xi32>) {
+ ^bb0(%b0 : i32, %b1 : i32, %b2 : i32, %b3 : i32, %b4 : i32):
%t0 = arith.addi %b0, %b1 : i32
%t1 = arith.addi %t0, %b2 : i32
- linalg.yield %t1 : i32
- } -> tensor<2x3x4x5x6x7x8x9xi32>
- return %generic : tensor<2x3x4x5x6x7x8x9xi32>
+ linalg.yield %t1, %t1 : i32, i32
+ } -> (tensor<2x3x4x5x6x7x8x9xi32>, tensor<3x4x2x9x5x6x7x8xi32>)
+ return %generic#0, %generic#1 : tensor<2x3x4x5x6x7x8x9xi32>, tensor<3x4x2x9x5x6x7x8xi32>
}
// CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>
// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1)>
// CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d2, d3)>
+// CHECK-DAG: #[[MAP3:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d1, d0, d4, d2, d3)>
// CHECK: func @fuse_by_collapsing(
// CHECK-SAME: %[[ARG0:.+]]: tensor<2x12x5x336x9xi32>
// CHECK-SAME: %[[ARG1:.+]]: tensor<2x3x4xi32>
// CHECK-SAME: %[[ARG2:.+]]: tensor<5x6x7x8xi32>
-// CHECK-DAG: %[[INIT:.+]] = tensor.empty()
+// CHECK-DAG: %[[INIT0:.+]] = tensor.empty() : tensor<2x3x4x5x6x7x8x9xi32>
+// CHECK-DAG: %[[INIT1:.+]] = tensor.empty() : tensor<3x4x2x9x5x6x7x8xi32>
// CHECK-DAG: %[[ARG1_RESHAPE:.+]] = tensor.collapse_shape %[[ARG1]] {{\[}}[0], [1, 2]{{\]}}
// CHECK-DAG: %[[ARG2_RESHAPE:.+]] = tensor.collapse_shape %[[ARG2]] {{\[}}[0], [1, 2, 3]{{\]}}
-// CHECK-DAG: %[[INIT_RESHAPE:.+]] = tensor.collapse_shape %[[INIT]] {{\[}}[0], [1, 2], [3], [4, 5, 6], [7]{{\]}}
-// CHECK: %[[COLLAPSED_OP:.+]] = linalg.generic
-// CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]], #[[MAP2]], #[[MAP0]]]
+// CHECK-DAG: %[[INIT0_RESHAPE:.+]] = tensor.collapse_shape %[[INIT0]] {{\[}}[0], [1, 2], [3], [4, 5, 6], [7]{{\]}}
+// CHECK-DAG: %[[INIT1_RESHAPE:.+]] = tensor.collapse_shape %[[INIT1]] {{\[}}[0, 1], [2], [3], [4], [5, 6, 7]{{\]}}
+// CHECK: %[[COLLAPSED_OP:.+]]:2 = linalg.generic
+// CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]], #[[MAP2]], #[[MAP0]], #[[MAP3]]]
// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel"]
// CHECK-SAME: ins(%[[ARG0]], %[[ARG1_RESHAPE]], %[[ARG2_RESHAPE]] :
-// CHECK-SAME: outs(%[[INIT_RESHAPE]] :
-// CHECK: %[[RESULT_RESHAPE:.+]] = tensor.expand_shape %[[COLLAPSED_OP]] {{\[}}[0], [1, 2], [3], [4, 5, 6], [7]{{\]}} output_shape [2, 3, 4, 5, 6, 7, 8, 9]
-// CHECK: return %[[RESULT_RESHAPE]]
+// CHECK-SAME: outs(%[[INIT0_RESHAPE]], %[[INIT1_RESHAPE]] :
+// CHECK: %[[RESULT0_RESHAPE:.+]] = tensor.expand_shape %[[COLLAPSED_OP]]#0 {{\[}}[0], [1, 2], [3], [4, 5, 6], [7]{{\]}} output_shape [2, 3, 4, 5, 6, 7, 8, 9]
+// CHECK: %[[RESULT1_RESHAPE:.+]] = tensor.expand_shape %[[COLLAPSED_OP]]#1 {{\[}}[0, 1], [2], [3], [4], [5, 6, 7]{{\]}} output_shape [3, 4, 2, 9, 5, 6, 7, 8]
+// CHECK: return %[[RESULT0_RESHAPE]], %[[RESULT1_RESHAPE]]
// CONTROL: func @fuse_by_collapsing(
// CONTROL-SAME: %[[ARG0:.+]]: tensor<2x12x5x336x9xi32>
// CONTROL-SAME: %[[ARG1:.+]]: tensor<2x3x4xi32>
// CONTROL-SAME: %[[ARG2:.+]]: tensor<5x6x7x8xi32>
// CONTROL: %[[EXPAND:.+]] = tensor.expand_shape %[[ARG0]]
-// CONTROL: %[[GENERIC:.+]] = linalg.generic
+// CONTROL: %[[GENERIC:.+]]:2 = linalg.generic
// CONTROL-SAME: ins(%[[EXPAND]],
-// CONTROL: return %[[GENERIC]]
+// CONTROL: return %[[GENERIC]]#0, %[[GENERIC]]#1
// -----
|
qedawkins
approved these changes
Sep 16, 2024
848a59d
to
fd39676
Compare
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Fusion of reshapes by collapsing patterns were restricted to single result operations, but the implementation supports multi result ops. This PR removes the restriction, since it is not necessary.