Skip to content

microsoft/CtP

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Unsupervised Video Representation Learning by Catch-the-Patch

Introduction

This is the codebase for the paper ""Unsupervised Visual Representation Learning by Tracking Patches in Video" (CVPR'21).

Getting Started

Installation

You can install some necessary libraries by either conda or Docker.

  • Conda (or virtualenv)

    # Step 0, create a new python environment
    conda create -n ctp python=3.7
    conda activate ctp
    
    # Step 1, install PyTorch (please select a suitable CUDA version)
    conda install pytorch torchvision cudatoolkit=10.1 -c pytorch
    
    # Step 2, install mmcv library
    git clone https://github.com/open-mmlab/mmcv.git
    cd mmcv
    MMCV_WITH_OPS=1 pip install -e .
    # one can also install pre-built binary file (full-version), please refer to the official repo, https://github.com/open-mmlab/mmcv
    
    # Step 3, (optional) install tensorboard
    pip install tensorboard
  • Docker

    Please refer to docker/Dockerfile.

Data Preparation

In our implementation, we save each video into a .zip file. For example, in UCF-101, ApplyEyeMakeup/v_ApplyEyeMakeup_g01_c01.zip file contains a series of decoded jpeg images: img_00001.jpg, img_00002.jpg, ...

See details in docs/data_preparation.md.

You can alternatively implement your own storage backend, as like pyvrl/datasets/backends/zip_backend.py

CtP Pretraining

All of our experiments use single-node distributed training. For example, if you wants to pretrain a CtP model on UCF-101 dataset:

bash tools/dist_train.sh configs/ctp/r3d_18_ucf101/pretraining.py 8 --data_dir /video_data/

The checkpoint will be saved in the work_dir entry defined in the configuration file.

Action Recognition

When finish pretraining, one can use the CtP-pretrained model to initialize the action recognizer. The checkpoint path is defined in the key of model.backbone.pretrained.

Model Training (with validation):

bash tools/dist_train.sh configs/ctp/r3d_18_ucf101/finetune_ucf101.py 8 --data_dir /video_data/ --validate

Model evaluation:

bash tools/dist_test.sh configs/ctp/r3d_18_ucf101/finetune_ucf101.py --gpus 8 --data_dir /video_data/ --progress

About

No description, website, or topics provided.

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages