Skip to content

Commit

Permalink
Auc mu weights (#3349)
Browse files Browse the repository at this point in the history
* Update auc_mu metric to use data weights if provided

* Calculate class sizes and total weights in Init so we only do it once

* Fix lint error

* Empty commit to trigger CI jobs
  • Loading branch information
btrotta authored Sep 20, 2020
1 parent f7ad945 commit 1782fcb
Show file tree
Hide file tree
Showing 2 changed files with 102 additions and 31 deletions.
114 changes: 84 additions & 30 deletions src/metric/multiclass_metric.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -199,30 +199,50 @@ class AucMuMetric : public Metric {
num_data_ = num_data;
label_ = metadata.label();

// get weights
weights_ = metadata.weights();
if (weights_ == nullptr) {
sum_weights_ = static_cast<double>(num_data_);
} else {
sum_weights_ = 0.0f;
for (data_size_t i = 0; i < num_data_; ++i) {
sum_weights_ += weights_[i];
}
}

// sort the data indices by true class
sorted_data_idx_ = std::vector<data_size_t>(num_data_, 0);
for (data_size_t i = 0; i < num_data_; ++i) {
sorted_data_idx_[i] = i;
}
Common::ParallelSort(sorted_data_idx_.begin(), sorted_data_idx_.end(),
[this](data_size_t a, data_size_t b) { return label_[a] < label_[b]; });
}

std::vector<double> Eval(const double* score, const ObjectiveFunction*) const override {
// the notation follows that used in the paper introducing the auc-mu metric:
// http://proceedings.mlr.press/v97/kleiman19a/kleiman19a.pdf

// get size of each class
auto class_sizes = std::vector<data_size_t>(num_class_, 0);
class_sizes_ = std::vector<data_size_t>(num_class_, 0);
for (data_size_t i = 0; i < num_data_; ++i) {
data_size_t curr_label = static_cast<data_size_t>(label_[i]);
++class_sizes[curr_label];
++class_sizes_[curr_label];
}

// get total weight of data in each class
class_data_weights_ = std::vector<double>(num_class_, 0);
if (weights_ != nullptr) {
for (data_size_t i = 0; i < num_data_; ++i) {
data_size_t curr_label = static_cast<data_size_t>(label_[i]);
class_data_weights_[curr_label] += weights_[i];
}
}
}

std::vector<double> Eval(const double* score, const ObjectiveFunction*) const override {
// the notation follows that used in the paper introducing the auc-mu metric:
// http://proceedings.mlr.press/v97/kleiman19a/kleiman19a.pdf

auto S = std::vector<std::vector<double>>(num_class_, std::vector<double>(num_class_, 0));
int i_start = 0;
for (int i = 0; i < num_class_; ++i) {
int j_start = i_start + class_sizes[i];
int j_start = i_start + class_sizes_[i];
for (int j = i + 1; j < num_class_; ++j) {
std::vector<double> curr_v;
for (int k = 0; k < num_class_; ++k) {
Expand All @@ -231,9 +251,9 @@ class AucMuMetric : public Metric {
double t1 = curr_v[i] - curr_v[j];
// extract the data indices belonging to class i or j
std::vector<data_size_t> class_i_j_indices;
class_i_j_indices.assign(sorted_data_idx_.begin() + i_start, sorted_data_idx_.begin() + i_start + class_sizes[i]);
class_i_j_indices.assign(sorted_data_idx_.begin() + i_start, sorted_data_idx_.begin() + i_start + class_sizes_[i]);
class_i_j_indices.insert(class_i_j_indices.end(),
sorted_data_idx_.begin() + j_start, sorted_data_idx_.begin() + j_start + class_sizes[j]);
sorted_data_idx_.begin() + j_start, sorted_data_idx_.begin() + j_start + class_sizes_[j]);
// sort according to distance from separating hyperplane
std::vector<std::pair<data_size_t, double>> dist;
for (data_size_t k = 0; static_cast<size_t>(k) < class_i_j_indices.size(); ++k) {
Expand All @@ -259,38 +279,64 @@ class AucMuMetric : public Metric {
double num_j = 0;
double last_j_dist = 0;
double num_current_j = 0;
for (size_t k = 0; k < dist.size(); ++k) {
data_size_t a = dist[k].first;
double curr_dist = dist[k].second;
if (label_[a] == i) {
if (std::fabs(curr_dist - last_j_dist) < kEpsilon) {
S[i][j] += num_j - 0.5 * num_current_j; // members of class j with same distance as a contribute 0.5
if (weights_ == nullptr) {
for (size_t k = 0; k < dist.size(); ++k) {
data_size_t a = dist[k].first;
double curr_dist = dist[k].second;
if (label_[a] == i) {
if (std::fabs(curr_dist - last_j_dist) < kEpsilon) {
S[i][j] += num_j - 0.5 * num_current_j; // members of class j with same distance as a contribute 0.5
} else {
S[i][j] += num_j;
}
} else {
S[i][j] += num_j;
++num_j;
if (std::fabs(curr_dist - last_j_dist) < kEpsilon) {
++num_current_j;
} else {
last_j_dist = dist[k].second;
num_current_j = 1;
}
}
} else {
++num_j;
if (std::fabs(curr_dist - last_j_dist) < kEpsilon) {
++num_current_j;
}
} else {
for (size_t k = 0; k < dist.size(); ++k) {
data_size_t a = dist[k].first;
double curr_dist = dist[k].second;
double curr_weight = weights_[a];
if (label_[a] == i) {
if (std::fabs(curr_dist - last_j_dist) < kEpsilon) {
S[i][j] += curr_weight * (num_j - 0.5 * num_current_j); // members of class j with same distance as a contribute 0.5
} else {
S[i][j] += curr_weight * num_j;
}
} else {
last_j_dist = dist[k].second;
num_current_j = 1;
num_j += curr_weight;
if (std::fabs(curr_dist - last_j_dist) < kEpsilon) {
num_current_j += curr_weight;
} else {
last_j_dist = dist[k].second;
num_current_j = curr_weight;
}
}
}
}
j_start += class_sizes[j];
j_start += class_sizes_[j];
}
i_start += class_sizes[i];
i_start += class_sizes_[i];
}

double ans = 0;
for (int i = 0; i < num_class_; ++i) {
for (int j = i + 1; j < num_class_; ++j) {
ans += (S[i][j] / class_sizes[i]) / class_sizes[j];
if (weights_ == nullptr) {
ans += (S[i][j] / class_sizes_[i]) / class_sizes_[j];
} else {
ans += (S[i][j] / class_data_weights_[i]) / class_data_weights_[j];
}
}
}
ans = (2 * ans / num_class_) / (num_class_ - 1);
return std::vector<double>(1, ans);
ans = (2.0 * ans / num_class_) / (num_class_ - 1);
return std::vector<double>(1.0, ans);
}

private:
Expand All @@ -302,8 +348,16 @@ class AucMuMetric : public Metric {
std::vector<std::string> name_;
/*! \brief Number of classes*/
int num_class_;
/*! \brief class_weights*/
/*! \brief Class auc-mu weights*/
std::vector<std::vector<double>> class_weights_;
/*! \brief Data weights */
const label_t* weights_;
/*! \brief Sum of data weights */
double sum_weights_;
/*! \brief Sum of data weights in each class*/
std::vector<double> class_data_weights_;
/*! \brief Number of data in each class*/
std::vector<data_size_t> class_sizes_;
/*! \brief config parameters*/
Config config_;
/*! \brief index to data, sorted by true class*/
Expand Down
19 changes: 18 additions & 1 deletion tests/python_package_test/test_engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -526,6 +526,23 @@ def test_auc_mu(self):
results_auc_mu = {}
lgb.train(params, lgb_X, num_boost_round=10, valid_sets=[lgb_X], evals_result=results_auc_mu)
self.assertAlmostEqual(results_auc_mu['training']['auc_mu'][-1], 0.5)
# test that weighted data gives different auc_mu
lgb_X = lgb.Dataset(X, label=y)
lgb_X_weighted = lgb.Dataset(X, label=y, weight=np.abs(np.random.normal(size=y.shape)))
results_unweighted = {}
results_weighted = {}
params = dict(params, num_classes=10, num_leaves=5)
lgb.train(params, lgb_X, num_boost_round=10, valid_sets=[lgb_X], evals_result=results_unweighted)
lgb.train(params, lgb_X_weighted, num_boost_round=10, valid_sets=[lgb_X_weighted],
evals_result=results_weighted)
self.assertLess(results_weighted['training']['auc_mu'][-1], 1)
self.assertNotEqual(results_unweighted['training']['auc_mu'][-1], results_weighted['training']['auc_mu'][-1])
# test that equal data weights give same auc_mu as unweighted data
lgb_X_weighted = lgb.Dataset(X, label=y, weight=np.ones(y.shape) * 0.5)
lgb.train(params, lgb_X_weighted, num_boost_round=10, valid_sets=[lgb_X_weighted],
evals_result=results_weighted)
self.assertAlmostEqual(results_unweighted['training']['auc_mu'][-1], results_weighted['training']['auc_mu'][-1],
places=5)
# should give 1 when accuracy = 1
X = X[:10, :]
y = y[:10]
Expand All @@ -538,7 +555,7 @@ def test_auc_mu(self):
results = {}
lgb.train(params, lgb_X, num_boost_round=100, valid_sets=[lgb_X], evals_result=results)
self.assertAlmostEqual(results['training']['auc_mu'][-1], 1)
# test loading weights
# test loading class weights
Xy = np.loadtxt(os.path.join(os.path.dirname(os.path.realpath(__file__)),
'../../examples/multiclass_classification/multiclass.train'))
y = Xy[:, 0]
Expand Down

0 comments on commit 1782fcb

Please sign in to comment.