Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Infer intersected reverse mapped types #52062

Closed
20 changes: 12 additions & 8 deletions src/compiler/checker.ts
Original file line number Diff line number Diff line change
Expand Up @@ -15735,7 +15735,7 @@ export function createTypeChecker(host: TypeCheckerHost): TypeChecker {
const type = elementTypes[i];
const flags = target.elementFlags[i];
if (flags & ElementFlags.Variadic) {
if (type.flags & TypeFlags.InstantiableNonPrimitive || isGenericMappedType(type)) {
if (type.flags & TypeFlags.InstantiableNonPrimitive || everyContainedType(type, isGenericMappedType)) {
// Generic variadic elements stay as they are.
addElement(type, ElementFlags.Variadic, target.labeledElementDeclarations?.[i]);
}
Expand Down Expand Up @@ -28577,13 +28577,17 @@ export function createTypeChecker(host: TypeCheckerHost): TypeChecker {

function getTypeOfPropertyOfContextualType(type: Type, name: __String, nameType?: Type) {
return mapType(type, t => {
if (isGenericMappedType(t) && !t.declaration.nameType) {
const constraint = getConstraintTypeFromMappedType(t);
const constraintOfConstraint = getBaseConstraintOfType(constraint) || constraint;
const propertyNameType = nameType || getStringLiteralType(unescapeLeadingUnderscores(name));
if (isTypeAssignableTo(propertyNameType, constraintOfConstraint)) {
return substituteIndexedMappedType(t, propertyNameType);
}
if (everyContainedType(t, t => isGenericMappedType(t) && !t.declaration.nameType)) {
const newTypes = mapDefined(t.flags & TypeFlags.Intersection ? (t as IntersectionType).types : [t], t => {
const mappedType = t as MappedType;
const constraint = getConstraintTypeFromMappedType(mappedType);
const constraintOfConstraint = getBaseConstraintOfType(constraint) || constraint;
const propertyNameType = nameType || getStringLiteralType(unescapeLeadingUnderscores(name));
if (isTypeAssignableTo(propertyNameType, constraintOfConstraint)) {
return substituteIndexedMappedType(mappedType, propertyNameType);
}
});
return newTypes.length ? getIntersectionType(newTypes) : undefined;
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This will quietly elide intersection members whose substitution fails the isTypeAssignableTo(propertyNameType, constraintOfConstraint) check. I honestly can't think of how that could occur offhand, but I think to better mimic old behavior, since intersections are structured types, and would previously only take the other branch. If newTypes.length !== (t.flags & TypeFlags.Intersection ? (t as IntersectionType).types : [t]).length, we need to fall through to the StructuredType fallback below.

Copy link
Contributor Author

@Andarist Andarist Mar 18, 2023

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I've tried a couple of things to hit such a case and I can't think of any. I can introduce the proposed change but personally I think that it should be accompanied with a test case. I understand the desire to match the old behavior but:

  1. if we manage to grab a concrete property in the branch responsible for structured types then this is basically the same thing as substituting indexed mapped type (so doing it within this branch responsible for generic mapped types leads to the same results already)
  2. if we manage to grab some index info there then I find it extremely unlikely there is a way to reach that branch of code if all intersected mapped type failed isTypeAssignableTo(propertyNameType, constraintOfConstraint) check. In a lot of situations, the constraintOfConstraint is already string | number | symbol and even when it's not... the index type has to come from one of the intersected members, so some of them had to pass this isTypeAssignableTo check and thus newTypes wouldn't be empty.
  3. The isTupleType is just impossible to be hit by intersections

So, all in all, I think that the requested change wouldn't be meaningful - but, ofc, I could be wrong here. And even if such intersections could today return something meaningful then that, I think, would be inconsistent with the isGenericMappedType(t) && !t.declaration.nameType branch. That's because that branch doesn't fallback to the branch related to structured types - even if isTypeAssignableTo(propertyNameType, constraintOfConstraint). So if this doesn't happen for generic mapped types - why should it happen for intersected ones? That would be an inconsistent behavior to me.

}
else if (t.flags & TypeFlags.StructuredType) {
const prop = getPropertyOfType(t, name);
Expand Down
188 changes: 188 additions & 0 deletions tests/baselines/reference/reverseMappedIntersectionInference.symbols
Original file line number Diff line number Diff line change
@@ -0,0 +1,188 @@
=== tests/cases/compiler/reverseMappedIntersectionInference.ts ===
type Results<T> = {
>Results : Symbol(Results, Decl(reverseMappedIntersectionInference.ts, 0, 0))
>T : Symbol(T, Decl(reverseMappedIntersectionInference.ts, 0, 13))

[K in keyof T]: {
>K : Symbol(K, Decl(reverseMappedIntersectionInference.ts, 1, 3))
>T : Symbol(T, Decl(reverseMappedIntersectionInference.ts, 0, 13))

data: T[K];
>data : Symbol(data, Decl(reverseMappedIntersectionInference.ts, 1, 19))
>T : Symbol(T, Decl(reverseMappedIntersectionInference.ts, 0, 13))
>K : Symbol(K, Decl(reverseMappedIntersectionInference.ts, 1, 3))

onSuccess: (data: T[K]) => void;
>onSuccess : Symbol(onSuccess, Decl(reverseMappedIntersectionInference.ts, 2, 15))
>data : Symbol(data, Decl(reverseMappedIntersectionInference.ts, 3, 16))
>T : Symbol(T, Decl(reverseMappedIntersectionInference.ts, 0, 13))
>K : Symbol(K, Decl(reverseMappedIntersectionInference.ts, 1, 3))

};
};

type Errors<E> = {
>Errors : Symbol(Errors, Decl(reverseMappedIntersectionInference.ts, 5, 2))
>E : Symbol(E, Decl(reverseMappedIntersectionInference.ts, 7, 12))

[K in keyof E]: {
>K : Symbol(K, Decl(reverseMappedIntersectionInference.ts, 8, 3))
>E : Symbol(E, Decl(reverseMappedIntersectionInference.ts, 7, 12))

error: E[K];
>error : Symbol(error, Decl(reverseMappedIntersectionInference.ts, 8, 19))
>E : Symbol(E, Decl(reverseMappedIntersectionInference.ts, 7, 12))
>K : Symbol(K, Decl(reverseMappedIntersectionInference.ts, 8, 3))

onError: (data: E[K]) => void;
>onError : Symbol(onError, Decl(reverseMappedIntersectionInference.ts, 9, 16))
>data : Symbol(data, Decl(reverseMappedIntersectionInference.ts, 10, 14))
>E : Symbol(E, Decl(reverseMappedIntersectionInference.ts, 7, 12))
>K : Symbol(K, Decl(reverseMappedIntersectionInference.ts, 8, 3))

};
};

declare function withKeyedObj<T, E>(
>withKeyedObj : Symbol(withKeyedObj, Decl(reverseMappedIntersectionInference.ts, 12, 2))
>T : Symbol(T, Decl(reverseMappedIntersectionInference.ts, 14, 30))
>E : Symbol(E, Decl(reverseMappedIntersectionInference.ts, 14, 32))

arg: Results<T> & Errors<E>
>arg : Symbol(arg, Decl(reverseMappedIntersectionInference.ts, 14, 36))
>Results : Symbol(Results, Decl(reverseMappedIntersectionInference.ts, 0, 0))
>T : Symbol(T, Decl(reverseMappedIntersectionInference.ts, 14, 30))
>Errors : Symbol(Errors, Decl(reverseMappedIntersectionInference.ts, 5, 2))
>E : Symbol(E, Decl(reverseMappedIntersectionInference.ts, 14, 32))

): [T, E];
>T : Symbol(T, Decl(reverseMappedIntersectionInference.ts, 14, 30))
>E : Symbol(E, Decl(reverseMappedIntersectionInference.ts, 14, 32))

const res = withKeyedObj({
>res : Symbol(res, Decl(reverseMappedIntersectionInference.ts, 18, 5))
>withKeyedObj : Symbol(withKeyedObj, Decl(reverseMappedIntersectionInference.ts, 12, 2))

a: {
>a : Symbol(a, Decl(reverseMappedIntersectionInference.ts, 18, 26))

data: "foo",
>data : Symbol(data, Decl(reverseMappedIntersectionInference.ts, 19, 6))

onSuccess: (dataArg) => {
>onSuccess : Symbol(onSuccess, Decl(reverseMappedIntersectionInference.ts, 20, 16))
>dataArg : Symbol(dataArg, Decl(reverseMappedIntersectionInference.ts, 21, 16))

dataArg;
>dataArg : Symbol(dataArg, Decl(reverseMappedIntersectionInference.ts, 21, 16))

},
error: 404,
>error : Symbol(error, Decl(reverseMappedIntersectionInference.ts, 23, 6))

onError: (errorArg) => {
>onError : Symbol(onError, Decl(reverseMappedIntersectionInference.ts, 24, 15))
>errorArg : Symbol(errorArg, Decl(reverseMappedIntersectionInference.ts, 25, 14))

errorArg;
>errorArg : Symbol(errorArg, Decl(reverseMappedIntersectionInference.ts, 25, 14))

},
},
b: {
>b : Symbol(b, Decl(reverseMappedIntersectionInference.ts, 28, 4))

data: true,
>data : Symbol(data, Decl(reverseMappedIntersectionInference.ts, 29, 6))

onSuccess: (dataArg) => {
>onSuccess : Symbol(onSuccess, Decl(reverseMappedIntersectionInference.ts, 30, 15))
>dataArg : Symbol(dataArg, Decl(reverseMappedIntersectionInference.ts, 31, 16))

dataArg;
>dataArg : Symbol(dataArg, Decl(reverseMappedIntersectionInference.ts, 31, 16))

},
error: 500,
>error : Symbol(error, Decl(reverseMappedIntersectionInference.ts, 33, 6))

onError: (errorArg) => {
>onError : Symbol(onError, Decl(reverseMappedIntersectionInference.ts, 34, 15))
>errorArg : Symbol(errorArg, Decl(reverseMappedIntersectionInference.ts, 35, 14))

errorArg;
>errorArg : Symbol(errorArg, Decl(reverseMappedIntersectionInference.ts, 35, 14))

},
},
});

declare function withTuples<T extends any[], E extends any[]>(
>withTuples : Symbol(withTuples, Decl(reverseMappedIntersectionInference.ts, 39, 3))
>T : Symbol(T, Decl(reverseMappedIntersectionInference.ts, 41, 28))
>E : Symbol(E, Decl(reverseMappedIntersectionInference.ts, 41, 44))

arg: [...(Results<T> & Errors<E>)]
>arg : Symbol(arg, Decl(reverseMappedIntersectionInference.ts, 41, 62))
>Results : Symbol(Results, Decl(reverseMappedIntersectionInference.ts, 0, 0))
>T : Symbol(T, Decl(reverseMappedIntersectionInference.ts, 41, 28))
>Errors : Symbol(Errors, Decl(reverseMappedIntersectionInference.ts, 5, 2))
>E : Symbol(E, Decl(reverseMappedIntersectionInference.ts, 41, 44))

): [T, E];
>T : Symbol(T, Decl(reverseMappedIntersectionInference.ts, 41, 28))
>E : Symbol(E, Decl(reverseMappedIntersectionInference.ts, 41, 44))

const res2 = withTuples([
>res2 : Symbol(res2, Decl(reverseMappedIntersectionInference.ts, 45, 5))
>withTuples : Symbol(withTuples, Decl(reverseMappedIntersectionInference.ts, 39, 3))
{
data: "foo",
>data : Symbol(data, Decl(reverseMappedIntersectionInference.ts, 46, 3))

onSuccess: (dataArg) => {
>onSuccess : Symbol(onSuccess, Decl(reverseMappedIntersectionInference.ts, 47, 16))
>dataArg : Symbol(dataArg, Decl(reverseMappedIntersectionInference.ts, 48, 16))

dataArg;
>dataArg : Symbol(dataArg, Decl(reverseMappedIntersectionInference.ts, 48, 16))

},
error: 404,
>error : Symbol(error, Decl(reverseMappedIntersectionInference.ts, 50, 6))

onError: (errorArg) => {
>onError : Symbol(onError, Decl(reverseMappedIntersectionInference.ts, 51, 15))
>errorArg : Symbol(errorArg, Decl(reverseMappedIntersectionInference.ts, 52, 14))

errorArg;
>errorArg : Symbol(errorArg, Decl(reverseMappedIntersectionInference.ts, 52, 14))

},
},
{
data: true,
>data : Symbol(data, Decl(reverseMappedIntersectionInference.ts, 56, 3))

onSuccess: (dataArg) => {
>onSuccess : Symbol(onSuccess, Decl(reverseMappedIntersectionInference.ts, 57, 15))
>dataArg : Symbol(dataArg, Decl(reverseMappedIntersectionInference.ts, 58, 16))

dataArg;
>dataArg : Symbol(dataArg, Decl(reverseMappedIntersectionInference.ts, 58, 16))

},
error: 500,
>error : Symbol(error, Decl(reverseMappedIntersectionInference.ts, 60, 6))

onError: (errorArg) => {
>onError : Symbol(onError, Decl(reverseMappedIntersectionInference.ts, 61, 15))
>errorArg : Symbol(errorArg, Decl(reverseMappedIntersectionInference.ts, 62, 14))

errorArg;
>errorArg : Symbol(errorArg, Decl(reverseMappedIntersectionInference.ts, 62, 14))

},
},
]);

Loading