Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Some kernel changes for TULR #14517

Merged
merged 19 commits into from
Feb 7, 2023
4 changes: 4 additions & 0 deletions cmake/onnxruntime_rocm_hipify.cmake
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,10 @@ set(contrib_ops_excluded_files
"bert/fast_gelu_impl.h"
"bert/fast_gelu.cc"
"bert/fast_gelu.h"
"bert/relative_attn_bias.cc"
"bert/relative_attn_bias.h"
"bert/relative_attn_bias_impl.cu"
"bert/relative_attn_bias_impl.h"
"bert/skip_layer_norm.cc"
"bert/skip_layer_norm.h"
"bert/skip_layer_norm_impl.cu"
Expand Down
63 changes: 59 additions & 4 deletions docs/ContribOperators.md
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@ Do not modify directly.*
* <a href="#com.microsoft.FusedConv">com.microsoft.FusedConv</a>
* <a href="#com.microsoft.FusedGemm">com.microsoft.FusedGemm</a>
* <a href="#com.microsoft.FusedMatMul">com.microsoft.FusedMatMul</a>
* <a href="#com.microsoft.GatedRelativePositionBias">com.microsoft.GatedRelativePositionBias</a>
* <a href="#com.microsoft.GatherND">com.microsoft.GatherND</a>
* <a href="#com.microsoft.Gelu">com.microsoft.Gelu</a>
* <a href="#com.microsoft.GemmFastGelu">com.microsoft.GemmFastGelu</a>
Expand Down Expand Up @@ -152,7 +153,7 @@ This version of the operator has been available since version 1 of the 'com.micr
<dd>Attention mask with shape (batch_size, 1, max_sequence_length, max_sequence_length), (batch_size, total_sequence_length) or (batch_size, sequence_length, total_sequence_length), or index with shape (batch_size) or (2 * batch_size)</dd>
<dt><tt>past</tt> (optional) : T</dt>
<dd>past state for key and value with shape (2, batch_size, num_heads, past_sequence_length, head_size)When past_present_share_buffer is set, its shape is (2, batch_size, num_heads, max_sequence_length, head_size)</dd>
<dt><tt>extra_add</tt> (optional) : T</dt>
<dt><tt>relative_position_bias</tt> (optional) : T</dt>
<dd>additional add to QxK' with shape (batch_size, num_heads, sequence_length, total_sequence_length)</dd>
<dt><tt>past_sequence_length</tt> (optional) : M</dt>
<dd>When past_present_share_buffer is used, it is required to specify past_sequence_length (could be 0).</dd>
Expand Down Expand Up @@ -1608,6 +1609,58 @@ This version of the operator has been available since version 1 of the 'com.micr
</dl>


### <a name="com.microsoft.GatedRelativePositionBias"></a><a name="com.microsoft.gatedrelativepositionbias">**com.microsoft.GatedRelativePositionBias**</a>

query_layer = (query_layer + query_bias).reshape(batch_size, seq_len, num_heads, head_size).transpose(1, 2)
gate_u, gate_r = torch.sigmoid(
self.gate_ur_linear(query_layer).view(batch_size, num_head, seq_len, 2, D/2).sum(-1, keepdim=False)
).chunk(2, dim=-1)
gate_u_1 = gate_u * (gate_r * self.eco_a - 1.0) + 2.0
rel_pos_bias = gate_u_1 * rel_pos

#### Version

This version of the operator has been available since version 1 of the 'com.microsoft' operator set.

#### Attributes

<dl>
<dt><tt>num_heads</tt> : int (required)</dt>
<dd>Number of attention heads</dd>
</dl>

#### Inputs

<dl>
<dt><tt>query_layer</tt> : T</dt>
<dd>tensor with shape (batch_size, seq_len, num_heads x head_size)</dd>
<dt><tt>query_bias</tt> : T</dt>
<dd>1-d tensor with shape (num_heads x head_size)</dd>
<dt><tt>rel_pos</tt> : T</dt>
<dd>tensor with shape (1, num_head, seq_len, seq_len)</dd>
<dt><tt>weight</tt> : T</dt>
<dd>gemm weight for the gated_ur_linear, shape (head_size, D), D is divisible by 2</dd>
<dt><tt>bias</tt> : T</dt>
<dd>bias for the gated_ur_linear, shape (D)</dd>
<dt><tt>eco_a</tt> : T</dt>
<dd>tensor of shape (1, num_heads, 1, 1)</dd>
</dl>

#### Outputs

<dl>
<dt><tt>output</tt> : T</dt>
<dd>output tensor with shape (batch_size, num_heads, seq_len, seq_len)</dd>
</dl>

#### Type Constraints

<dl>
<dt><tt>T</tt> : tensor(float), tensor(float16)</dt>
<dd>Constrain input and output types to float tensors.</dd>
</dl>


### <a name="com.microsoft.GatherND"></a><a name="com.microsoft.gathernd">**com.microsoft.GatherND**</a>

Given `data` tensor of rank r >= 1, and `indices` tensor of rank q >= 1, gather
Expand Down Expand Up @@ -2222,7 +2275,7 @@ This version of the operator has been available since version 1 of the 'com.micr
<dd>Number of attention heads</dd>
</dl>

#### Inputs (2 - 5)
#### Inputs (2 - 6)

<dl>
<dt><tt>query</tt> : T</dt>
Expand All @@ -2235,6 +2288,8 @@ This version of the operator has been available since version 1 of the 'com.micr
<dd>Bias tensor with shape (hidden_size + hidden_size + v_hidden_size) from input projection</dd>
<dt><tt>key_padding_mask</tt> (optional) : M</dt>
<dd>Key padding mask with shape (batch_size) or (batch_size, kv_sequence_length)</dd>
<dt><tt>relative_position_bias</tt> (optional) : T</dt>
<dd>relative position bias: addition to QxK' with shape (batch_size, num_heads, sequence_length, total_sequence_length) or (1, num_heads, sequence_length, total_sequence_length)</dd>
</dl>

#### Outputs
Expand Down Expand Up @@ -3221,7 +3276,7 @@ This version of the operator has been available since version 1 of the 'com.micr
left-side padding, mask_index has shape (2 * batch_size), where the values are the exclusive end positions followed by
the inclusive start positions. When unidirectional is 1, and each token only attend to previous tokens. For GPT-2, both past
and present state are optional. Present state could appear in output even when past state is not in input.
Current version does not support past/present, extra_add and qkv_hidden_sizes.
Current version does not support past/present, relative_position_bias and qkv_hidden_sizes.
TODO: Support them if needed in the future.

#### Version
Expand Down Expand Up @@ -3286,7 +3341,7 @@ This version of the operator has been available since version 1 of the 'com.micr
<dd>Attention mask with shape (batch_size, 1, max_sequence_length, max_sequence_length), (batch_size, past_sequence_length + sequence_length)or (batch_size, sequence_length, past_sequence_length + sequence_length), or index with shape (batch_size) or (2 * batch_size).</dd>
<dt><tt>past</tt> (optional) : Q</dt>
<dd>past state for key and value with shape (2, batch_size, num_heads, past_sequence_length, head_size).</dd>
<dt><tt>extra_add</tt> (optional) : S</dt>
<dt><tt>relative_position_bias</tt> (optional) : S</dt>
<dd>additional add to QxK' with shape (batch_size, num_heads, sequence_length, sequence_length).</dd>
</dl>

Expand Down
11 changes: 6 additions & 5 deletions docs/OperatorKernels.md
Original file line number Diff line number Diff line change
Expand Up @@ -417,7 +417,7 @@ Do not modify directly.*
| |
| |
|**Operator Domain:** *com.microsoft*||||
|Attention|*in* input:**T**<br> *in* weights:**T**<br> *in* bias:**T**<br> *in* mask_index:**M**<br> *in* past:**T**<br> *in* extra_add:**T**<br> *in* past_sequence_length:**M**<br> *out* output:**T**<br> *out* present:**T**|1+|**T** = tensor(float)|
|Attention|*in* input:**T**<br> *in* weights:**T**<br> *in* bias:**T**<br> *in* mask_index:**M**<br> *in* past:**T**<br> *in* relative_position_bias:**T**<br> *in* past_sequence_length:**M**<br> *out* output:**T**<br> *out* present:**T**|1+|**T** = tensor(float)|
|AttnLSTM|*in* X:**T**<br> *in* W:**T**<br> *in* R:**T**<br> *in* B:**T**<br> *in* sequence_lens:**T1**<br> *in* initial_h:**T**<br> *in* initial_c:**T**<br> *in* P:**T**<br> *in* QW:**T**<br> *in* MW:**T**<br> *in* V:**T**<br> *in* M:**T**<br> *in* memory_seq_lens:**T1**<br> *in* AW:**T**<br> *out* Y:**T**<br> *out* Y_h:**T**<br> *out* Y_c:**T**|1+|**T** = tensor(double), tensor(float)<br/> **T1** = tensor(int32)|
|BeamSearch|*in* input_ids:**I**<br> *in* max_length:**I**<br> *in* min_length:**I**<br> *in* num_beams:**I**<br> *in* num_return_sequences:**I**<br> *in* length_penalty:**T**<br> *in* repetition_penalty:**T**<br> *in* vocab_mask:**M**<br> *in* prefix_vocab_mask:**M**<br> *in* attention_mask:**I**<br> *out* sequences:**I**<br> *out* sequences_scores:**T**<br> *out* scores:**T**|1+|**T** = tensor(float)|
|BiasGelu|*in* A:**T**<br> *in* B:**T**<br> *out* C:**T**|1+|**T** = tensor(float)|
Expand Down Expand Up @@ -785,7 +785,7 @@ Do not modify directly.*
| |
| |
|**Operator Domain:** *com.microsoft*||||
|Attention|*in* input:**T**<br> *in* weights:**T**<br> *in* bias:**T**<br> *in* mask_index:**M**<br> *in* past:**T**<br> *in* extra_add:**T**<br> *in* past_sequence_length:**M**<br> *out* output:**T**<br> *out* present:**T**|1+|**T** = tensor(float), tensor(float16)|
|Attention|*in* input:**T**<br> *in* weights:**T**<br> *in* bias:**T**<br> *in* mask_index:**M**<br> *in* past:**T**<br> *in* relative_position_bias:**T**<br> *in* past_sequence_length:**M**<br> *out* output:**T**<br> *out* present:**T**|1+|**T** = tensor(float), tensor(float16)|
|BeamSearch|*in* input_ids:**I**<br> *in* max_length:**I**<br> *in* min_length:**I**<br> *in* num_beams:**I**<br> *in* num_return_sequences:**I**<br> *in* length_penalty:**T**<br> *in* repetition_penalty:**T**<br> *in* vocab_mask:**M**<br> *in* prefix_vocab_mask:**M**<br> *in* attention_mask:**I**<br> *out* sequences:**I**<br> *out* sequences_scores:**T**<br> *out* scores:**T**|1+|**T** = tensor(float), tensor(float16)|
|BiasDropout|*in* data:**T**<br> *in* bias:**T**<br> *in* residual:**T**<br> *in* ratio:**T1**<br> *in* training_mode:**T2**<br> *out* output:**T**<br> *out* mask:**T2**|1+|**T** = tensor(bfloat16), tensor(double), tensor(float), tensor(float16)<br/> **T1** = tensor(bfloat16), tensor(double), tensor(float), tensor(float16)<br/> **T2** = tensor(bool)|
|BiasGelu|*in* A:**T**<br> *in* B:**T**<br> *out* C:**T**|1+|**T** = tensor(bfloat16), tensor(double), tensor(float), tensor(float16)|
Expand All @@ -803,18 +803,19 @@ Do not modify directly.*
|FastGelu|*in* X:**T**<br> *in* bias:**T**<br> *out* Y:**T**|1+|**T** = tensor(bfloat16), tensor(float), tensor(float16)|
|FusedConv|*in* X:**T**<br> *in* W:**T**<br> *in* B:**T**<br> *in* Z:**T**<br> *out* Y:**T**|1+|**T** = tensor(float)|
|FusedMatMul|*in* A:**T**<br> *in* B:**T**<br> *out* Y:**T**|1+|**T** = tensor(bfloat16), tensor(double), tensor(float), tensor(float16)|
|GatedRelativePositionBias|*in* query_layer:**T**<br> *in* query_bias:**T**<br> *in* rel_pos:**T**<br> *in* weight:**T**<br> *in* bias:**T**<br> *in* eco_a:**T**<br> *out* output:**T**|1+|**T** = tensor(float), tensor(float16)|
|Gelu|*in* X:**T**<br> *out* Y:**T**|1+|**T** = tensor(double), tensor(float), tensor(float16)|
|GreedySearch|*in* input_ids:**I**<br> *in* max_length:**I**<br> *in* min_length:**I**<br> *in* repetition_penalty:**T**<br> *in* vocab_mask:**I**<br> *in* prefix_vocab_mask:**I**<br> *in* attention_mask:**I**<br> *out* sequences:**I**|1+|**T** = tensor(float), tensor(float16)|
|GridSample|*in* X:**T1**<br> *in* Grid:**T1**<br> *out* Y:**T2**|1+|**T1** = tensor(float)<br/> **T2** = tensor(float)|
|GroupNorm|*in* X:**T**<br> *in* gamma:**M**<br> *in* beta:**M**<br> *out* Y:**T**|1+|**T** = tensor(float), tensor(float16)|
|Inverse|*in* X:**T**<br> *out* Y:**T**|1+|**T** = tensor(double), tensor(float), tensor(float16)|
|Irfft|*in* X:**T**<br> *out* Y:**T**|1+|**T** = tensor(double), tensor(float), tensor(float16)|
|LongformerAttention|*in* input:**T**<br> *in* weight:**T**<br> *in* bias:**T**<br> *in* mask:**T**<br> *in* global_weight:**T**<br> *in* global_bias:**T**<br> *in* global:**G**<br> *out* output:**T**|1+|**T** = tensor(float), tensor(float16)|
|MultiHeadAttention|*in* query:**T**<br> *in* key:**T**<br> *in* value:**T**<br> *in* bias:**T**<br> *in* key_padding_mask:**M**<br> *out* output:**T**|1+|**T** = tensor(float), tensor(float16)|
|MultiHeadAttention|*in* query:**T**<br> *in* key:**T**<br> *in* value:**T**<br> *in* bias:**T**<br> *in* key_padding_mask:**M**<br> *in* relative_position_bias:**T**<br> *out* output:**T**|1+|**T** = tensor(float), tensor(float16)|
|NGramRepeatBlock|*in* input_ids:**Tid**<br> *in* scores:**T**<br> *out* scores_out:**T**|1+|**T** = tensor(float)<br/> **Tid** = tensor(int64)|
|NhwcConv|*in* X:**T**<br> *in* W:**T**<br> *in* B:**T**<br> *out* Y:**T**|1+|**T** = tensor(float), tensor(float16)|
|QAttention|*in* input:**T1**<br> *in* weight:**T2**<br> *in* bias:**T3**<br> *in* input_scale:**T3**<br> *in* weight_scale:**T3**<br> *in* mask_index:**T4**<br> *in* input_zero_point:**T1**<br> *in* weight_zero_point:**T2**<br> *in* past:**T3**<br> *out* output:**T3**<br> *out* present:**T3**|1+|**T1** = tensor(int8)<br/> **T2** = tensor(int8)<br/> **T3** = tensor(float), tensor(float16)<br/> **T4** = tensor(int32)|
|QOrderedAttention|*in* input:**Q**<br> *in* scale_input:**S**<br> *in* scale_Q_gemm:**S**<br> *in* scale_K_gemm:**S**<br> *in* scale_V_gemm:**S**<br> *in* Q_weight:**Q**<br> *in* K_weight:**Q**<br> *in* V_weight:**Q**<br> *in* scale_Q_weight:**S**<br> *in* scale_K_weight:**S**<br> *in* scale_V_weight:**S**<br> *in* Q_bias:**S**<br> *in* K_bias:**S**<br> *in* V_bias:**S**<br> *in* scale_QKT_gemm:**S**<br> *in* scale_QKT_softmax:**S**<br> *in* scale_values_gemm:**S**<br> *in* mask_index:**G**<br> *in* past:**Q**<br> *in* extra_add:**S**<br> *out* output:**Q**|1+|**G** = tensor(int32)<br/> **Q** = tensor(int8)<br/> **S** = tensor(float)|
|QOrderedAttention|*in* input:**Q**<br> *in* scale_input:**S**<br> *in* scale_Q_gemm:**S**<br> *in* scale_K_gemm:**S**<br> *in* scale_V_gemm:**S**<br> *in* Q_weight:**Q**<br> *in* K_weight:**Q**<br> *in* V_weight:**Q**<br> *in* scale_Q_weight:**S**<br> *in* scale_K_weight:**S**<br> *in* scale_V_weight:**S**<br> *in* Q_bias:**S**<br> *in* K_bias:**S**<br> *in* V_bias:**S**<br> *in* scale_QKT_gemm:**S**<br> *in* scale_QKT_softmax:**S**<br> *in* scale_values_gemm:**S**<br> *in* mask_index:**G**<br> *in* past:**Q**<br> *in* relative_position_bias:**S**<br> *out* output:**Q**|1+|**G** = tensor(int32)<br/> **Q** = tensor(int8)<br/> **S** = tensor(float)|
|QOrderedGelu|*in* X:**Q**<br> *in* scale_X:**S**<br> *in* scale_Y:**S**<br> *out* Y:**Q**|1+|**Q** = tensor(int8)<br/> **S** = tensor(float)|
|QOrderedLayerNormalization|*in* X:**Q**<br> *in* scale_X:**S**<br> *in* scale:**F**<br> *in* B:**F**<br> *in* scale_Y:**S**<br> *out* Y:**Q**|1+|**F** = tensor(float), tensor(float16)<br/> **Q** = tensor(int8)<br/> **S** = tensor(float)|
|QOrderedLongformerAttention|*in* input:**Q**<br> *in* scale_input:**S**<br> *in* weight:**Q**<br> *in* scale_weight:**S**<br> *in* bias:**S**<br> *in* scale_bias:**S**<br> *in* scale_qkv_gemm:**S**<br> *in* mask:**F**<br> *in* global_weight:**Q**<br> *in* scale_global_weight:**S**<br> *in* global_bias:**S**<br> *in* scale_global_gemm:**S**<br> *in* global:**G**<br> *in* scale_output:**S**<br> *out* output:**Q**|1+|**F** = tensor(float16)<br/> **G** = tensor(int32)<br/> **Q** = tensor(int8)<br/> **S** = tensor(float)|
Expand Down Expand Up @@ -1159,7 +1160,7 @@ Do not modify directly.*
| |
| |
|**Operator Domain:** *com.microsoft*||||
|Attention|*in* input:**T**<br> *in* weights:**T**<br> *in* bias:**T**<br> *in* mask_index:**M**<br> *in* past:**T**<br> *in* extra_add:**T**<br> *in* past_sequence_length:**M**<br> *out* output:**T**<br> *out* present:**T**|1+|**M** = tensor(int32)<br/> **T** = tensor(float), tensor(float16)|
|Attention|*in* input:**T**<br> *in* weights:**T**<br> *in* bias:**T**<br> *in* mask_index:**M**<br> *in* past:**T**<br> *in* relative_position_bias:**T**<br> *in* past_sequence_length:**M**<br> *out* output:**T**<br> *out* present:**T**|1+|**M** = tensor(int32)<br/> **T** = tensor(float), tensor(float16)|
|BiasGelu|*in* A:**T**<br> *in* B:**T**<br> *out* C:**T**|1+|**T** = tensor(float), tensor(float16)|
|ConvTransposeWithDynamicPads|*in* X:**T**<br> *in* W:**T**<br> *in* Pads:**tensor(int64)**<br> *in* B:**T**<br> *out* Y:**T**|1+|**T** = tensor(float), tensor(float16)|
|DequantizeLinear|*in* x:**T1**<br> *in* x_scale:**T2**<br> *in* x_zero_point:**T1**<br> *out* y:**T2**|1+|**T1** = tensor(float)<br/> **T2** = tensor(uint8)|
Expand Down
6 changes: 3 additions & 3 deletions onnxruntime/contrib_ops/cpu/bert/attention.cc
Original file line number Diff line number Diff line change
Expand Up @@ -198,7 +198,7 @@ Status Attention<T>::Compute(OpKernelContext* context) const {

const Tensor* mask_index = context->Input<Tensor>(3);
const Tensor* past = context->Input<Tensor>(4);
const Tensor* extra_add_qk = context->Input<Tensor>(5);
const Tensor* relative_position_bias = context->Input<Tensor>(5);

const TensorShape& weights_shape = (weights ? weights->Shape() : weight_shape_);

Expand All @@ -208,7 +208,7 @@ Status Attention<T>::Compute(OpKernelContext* context) const {
bias->Shape(),
mask_index,
past,
extra_add_qk,
relative_position_bias,
&parameters));

const int batch_size = parameters.batch_size;
Expand Down Expand Up @@ -331,7 +331,7 @@ Status Attention<T>::Compute(OpKernelContext* context) const {
return ApplyAttention(Q, K, V, mask_index, past, output,
batch_size, sequence_length,
parameters.head_size, parameters.v_head_size, parameters.v_hidden_size,
extra_add_qk, context);
relative_position_bias, context);
}
} // namespace contrib
} // namespace onnxruntime
Loading