Skip to content

mike-perdide/scikit-learn-tutorial

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

66 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

About

scikit-learn is a python module for machine learning built on top of numpy / scipy.

The purpose of the scikit-learn-tutorial subproject is to learn how to apply machine learning to practical situations using the algorithms implemented in the scikit-learn library.

The target audience is experienced Python developers familiar with numpy and scipy.

Downloading the PDF

Prebuilt versions of this tutorial are available from the github download page.

While following the exercices you might find helpful to use the official scikit-learn user guide (PDF) as a more comprehensive reference:

If you need a numpy refresher please first have a look at the Scientific Python lecture notes (PDF), esp. chapter 4.

Online HTML version

The prebuilt HTML version is published as a github pages:

http://scikit-learn.github.com/scikit-learn-tutorial

Source code of the tutorial and exercises

The project is hosted on github at https://github.com/scikit-learn/scikit-learn-tutorial

Building the tutorial

You can build the HTML and PDF (requires pdflatex) versions of this tutorial by installing sphinx (1.0.0+):

$ sudo pip install -U sphinx

Then for the html variant:

$ cd tutorial
$ make html

The results is available in the _build/html/ subdolder. Point your browser to the index.html file for table of content.

To build the PDF variant:

$ make latex
$ cd _build/latex
$ pdflatex scikit_learn_tutorial.tex

You should get a file named scikit_learn_tutorial.pdf as output.

Mailing list

If you have questions about this tutorial you can ask them on the scikit-learn mailing list on sourceforge: https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

IRC channel

Some developers tend to hang around the channel #scikit-learn at irc.freenode.net, especially during the week preparing a new release. If nobody is available to answer your questions there don't hesitate to ask it on the mailing list to reach a wider audience.

License

This tutorial is distributed under the Creative Commons Attribution 3.0 license. The python source code and exercices solutions are distributed under the same license as the scikit-learn project (Simplidied BSD).

About

Applied Machine Learning in Python with scikit-learn

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages