Out-of-distribution detection on videos.
Paper: Out-of-Distribution Detection Using Union of1-Dimensional Subspaces
If you use this code, please cite the following:
@conference{Zaeemzadeh2021,
title = {Out-of-Distribution Detection Using Union of 1-Dimensional Subspaces},
author = {Alireza Zaeemzadeh and Niccolò Bisagno and Zeno Sambugaro and Nicola Conci and Nazanin Rahnavard and Mubarak Shah},
url = {https://www.crcv.ucf.edu/wp-content/uploads/2018/11/Out-of-Distribution-Detection-Using-Union-of-1-Dimensional-Subspaces.pdf
https://www.crcv.ucf.edu/wp-content/uploads/2018/11/Out-of-Distribution-Detection-Using-Union-of-1-Dimensional-Subspaces_Supp.pdf},
year = {2021},
date = {2021-06-19},
publisher = {IEEE Conference on Computer Vision and Pattern Recognition},
keywords = {},
pubstate = {published},
tppubtype = {conference}
}
Pay attention: requisites for extraction of the features and detection are different.
- PyTorch
conda install pytorch torchvision cuda80 -c soumith
- FFmpeg, FFprobe
wget http://johnvansickle.com/ffmpeg/releases/ffmpeg-release-64bit-static.tar.xz
tar xvf ffmpeg-release-6114bit-static.tar.xz
cd ./ffmpeg-3.3.3-64bit-static/; sudo cp ffmpeg ffprobe /usr/local/bin;
- Python 3
- Download videos and train/test splits here
- Convert from avi to jpg files
python utils/video_jpg_ucf101_hmdb51.py avi_video_directory jpg_video_directory
- Generate n_frames files
python utils/n_frames_ucf101_hmdb51.py jpg_video_directory
- Generate annotation file in json format similar to ActivityNet
python utils/ucf101_json.py annotation_dir_path
Assume the structure of data directories is the following:
~/
data/
kinetics_videos/
jpg/
.../ (directories of class names)
.../ (directories of video names)
... (jpg files)
results/
save_100.pth
kinetics.json
- Confirm all options:
python main.lua -h
Pre-trained models for the 3D residual neural network are available here. All models are trained on Kinetics.
Training:
python main.py --root_path *path to dataset* --video_path jpg_video --annotation_path ucfTrainTestlist/ucf101_01.json --result_path results --dataset ucf101 --model resnet --model_depth 34 --n_classes 50 --batch_size 64 --n_threads 4 --checkpoint 5
- numpy 1.17.4
- Pillow 6.2.1
- pip 19.3.1
- scipy 1.3.2
- setuptools 41.6.0
- six 1.13.0
- torch 1.3.1+cu92
- torchvision 0.4.2+cu92
- cuda 9.2
- wheel 0.33.6
virtualenv -p python3 OOD-1DSubspaces-features
source OOD-1DSubspaces-features/bin/activate
cd OOD-features/code/
pip3 install -r requirementsPy3.txt
virtualenv -p python2 OOD-1DSubspaces-detector
source OOD-1DSubspaces-detector/bin/activate
cd OOD-features/code/
pip install -r requirementsPy2.txt
cd code
chmod 775 extract_features_wideresnet.sh
./extract_features_wideresnet.sh
or
cd code
python3 main.py --trained_model_path '*path to results*/save_200.pth' --path models/resnet.py --dataset "ucf101" --root_path *root path* --video_path_in UCF101/dataset --video_path_out UCF101/dataset out --annotation_path_in UCF101/splits/olympicSport_1.json --annotation_path_out UCF101/splits_ood/ucf101_1.json
python main_detector.py --path *path to extracted features* --out_data *name of the OOD dataset contained in the features folder*
Pre-extracted features are available here