Source code of our paper:
Deep Inverse Rendering for High-resolution SVBRDF Estimation from an Arbitrary Number of Images
Duan Gao, Xiao Li, Yue Dong, Pieter Peers, Kun Xu, Xin Tong.
ACM Transactions on Graphics (Proceedings of SIGGRAPH 2019)*
More information (including our paper, supplementary, video and slides) can be found at My Personal Page.
If you have any questions about our paper, please feel free to contact me ([email protected])
Our pretrained SVBRDF auto-encoder can be downloaded from here.
Download the pretrained model and extract it into ./model/
.
-
Python (with opencv-python, numpy; test on Python 3.6)
-
Tensorflow-gpu (test on tensorflow>1.10)
- Test mode (SVBRDF map as input)
python3 main.py
--N 20 # number of input images
--checkpoint ../model/ # pretrained model of auto-encoder
--dataDir ../example_data/example_svbrdf # folder contains a set of input images
--logDir ../log_test_example # output folder
--initDir ../example_data/example_init # folder contains initial SVBRDF maps or initial code
--network network_ae_fixBN # network architecture (default: network_ae_fixBN)
--init_method svbrdf
--input_type svbrdf
--wlv_type load
--wlvDir ../example_data/example_wlv
- Eval mode (captured images as input)
python3 main.py
--dataDir ../example_data/example_images # LDR images are given in example_images
--input_type image
...
-
SVBRDF format
normal, diffuse, roughness, specular
(diffuse map is in srgb color space (gamma 2.2), other maps are in linear color space)
-
Command arguments:
-- input_type: ['image', 'svbrdf']
'image': a set of images, used in evaluate.
'svbrdf': a set of SVBRDFs, used in testing.
-- init_method: ['svbrdf', 'code', 'rand']
'svbrdf': the estimated SVBRDF (using our encoder to embedding it into our latent space)
'code': the latent code (numpy array)
'rand': random initialization the latent code
-- wlv_type: ['random', 'load']
'random': random generate camera position and light position
'load': load camera position and light position from file
If you use our code or pretrained models, please cite as following:
@article{gao2019deep,
title={Deep inverse rendering for high-resolution SVBRDF estimation from an arbitrary number of images},
author={GAO, DUAN and Li, Xiao and Dong, Yue and Peers, Pieter and Xu, Kun and Tong, Xin},
journal={ACM Transactions on Graphics (TOG)},
volume={38},
number={4},
pages={134},
year={2019},
month={July},
publisher={ACM}
}