-
-
Notifications
You must be signed in to change notification settings - Fork 43
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
merge #132
Closed
Closed
merge #132
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
A recent commit added new variables only used if CONFIG_NETDEVICES is set. A simple fix is to only declare these variables if the same condition is valid. Other solutions could be to move the code related to SO_BINDTODEVICE option from _bpf_setsockopt() function to a dedicated one or only declare these variables in the related "case" section. Fixes: 70c5899 ("bpf: Allow SO_BINDTODEVICE opt in bpf_setsockopt") Signed-off-by: Matthieu Baerts <[email protected]>
The msk sk_shutdown flag is set by a workqueue, possibly introducing some delay in user-space notification. If the last subflow carries some data with the fin packet, the user space can wake-up before RCV_SHUTDOWN is set. If it executes unblocking recvmsg(), it may return with an error instead of eof. Address the issue explicitly checking for eof in recvmsg(), when no data is found. Fixes: 59832e2 ("mptcp: subflow: check parent mptcp socket on subflow state change") Signed-off-by: Paolo Abeni <[email protected]>
When the left-over msk is freed by subflow_syn_recv_sock(), we don't invoke the proto->destroy() method, to the socket is not removed from the token container, leading to later UaF. Address the issue explicitly removing the token even in the above error path. Signed-off-by: Paolo Abeni <[email protected]>
Add the missing annotation in some setup-only functions. Signed-off-by: Paolo Abeni <[email protected]> -- v1 -> v2 - move mptcp_token_init() into the next patch - added missing annotation for pm_netlink
Replace the radix tree with an hash table allocated at boot time. The radix tree has some short coming: a single lock is contented by all the mptcp operation, the lookup currently use such lock, and traversing all the items would require lock, too. With hash table instead we trade a little memory to address all the above - a per bucket lock is used. To hash the MPTCP sockets, we re-use the msk' sk_node entry: the MPTCP sockets are never hashed by the stack. Replace the existing hash proto callbacks with dummy implementation, annotating the above constraint. Additionally refactor the token creation to code to: - limit the number of consecutive attempts to a fixed maximum. Hitting an hash bucket with long chain is considered a failed attempt - accept() no longer can fail to to token management. - if token creation fails at connect() time, we do fallback to TCP (before the connection was closed) Signed-off-by: Paolo Abeni <[email protected]>
This clean-up the code a bit, reduces the number of used hooks and indirect call requested, and allow better error reporting from __mptcp_subflow_connect() Signed-off-by: Paolo Abeni <[email protected]>
currently MPTCP uses a custom hook to executed unit test at boot time. Let's use the KUNIT framework instead. Additionally move the relevant code to a separate file and export the function needed by the test when self-tests are build as a module. Signed-off-by: Paolo Abeni <[email protected]>
Unit tests for the internal MPTCP token APIs, using KUNIT Signed-off-by: Paolo Abeni <[email protected]>
keep using MPTCP sockets and a "dummy mapping" in case of fallback to regular TCP. Skip adding DSS option on send, if TCP fallback has been done earlier. Notes: I'm unsure on what to do in mptcp_clean_una() to do a one-time flush of the retransmit queue, as per Mat's suggestion. Any advice? Changes since v1 - rebase on top of Paolo's fix for NULL dereference in mptcp_recvmsg() Changes since RFC v2: - use a bit in msk->flags, rather than a dedicated boolean in struct msk. This bit is going to be used in combination with another one, TCP_FALLBACK_ALLOWED, that is 1 at the first subflow creation and gets cleared once TCP fallback is no more allowed. - separate code that adds support for "infinite mapping", and use the term "dummy" instead of "infinite". Suggested by Mat - remove inappropriate call to __mptcp_do_fallback() in mptcp_accept() (Paolo) Changes since RFC v1: - use a dedicated member of struct msk to indicate that a fallback ha happened, use it in case of infinite mapping - don't delete skb_ext in case of infinite mapping (Mat) - test the value of pm.subflows on reception of an infinite map to ensure that no other subflow is currently opened (Mat) - in mptcp_established_options(), avoid adding TCP options in case of fallback indication; simplify sendmsg()/recvmsg()/poll() to keep using the MPTCP socket in case of TCP fallback. Set the fallback indication in case subflow is not mp_capable after successful 3-way handshake, instead of flipping 'is_mptcp' (Paolo/Mat) - remove deadcode in mptcp_finish_connect, and increment MPTCP_MIB_MPCAPABLEACTIVEFALLBACK in subflow_finish_connect (Paolo) BugLink: #11 BugLink: #22 Co-developed-by: Paolo Abeni <[email protected]> Signed-off-by: Paolo Abeni <[email protected]> Signed-off-by: Davide Caratti <[email protected]>
The script generates two random files that are then sent via tcp and mptcp connections. In order to compare throughput over consecutive runs add an option to provide the file size on the command line: "-f 128000". Also add an option, -t, to enable tcp tests. This is useful to compare throughput of mptcp connections and tcp connections. Example: run tests with a 4mb file size, 300ms delay 0.01% loss, default gso/tso/gro settings and with large write/blocking io: mptcp_connect.sh -t -f $((4 * 1024 * 1024)) -d 300 -l 0.01% -r 0 -e "" -m mmap Signed-off-by: Florian Westphal <[email protected]>
When mptcp is used, userspace doesn't read from the tcp (subflow) socket but from the parent (mptcp) socket receive queue. skbs are moved from the subflow socket to the mptcp rx queue either from 'data_ready' callback (if mptcp socket can be locked), a work queue, or the socket receive function. This means tcp_rcv_space_adjust() is never called and thus no receive buffer size auto-tuning is done. An earlier (not merged) patch added tcp_rcv_space_adjust() calls to the function that moves skbs from subflow to mptcp socket. While this enabled autotuning, it also meant tuning was done even if userspace was reading the mptcp socket very slowly. This adds mptcp_rcv_space_adjust() and calls it after userspace has read data from the mptcp socket rx queue. Its very similar to tcp_rcv_space_adjust, with two differences: 1. The rtt estimate is the largest one observed on a subflow 2. The rcvbuf size and window clamp of all subflows is adjusted to the mptcp-level rcvbuf. Otherwise, we get spurious drops at tcp (subflow) socket level if the skbs are not moved to the mptcp socket fast enough and reduced throughput.. Before: time mptcp_connect.sh -t -f $((4*1024*1024)) -d 300 -l 0.01% -r 0 -e "" -m mmap [..] ns4 MPTCP -> ns3 (10.0.3.2:10108 ) MPTCP (duration 40562ms) [ OK ] ns4 MPTCP -> ns3 (10.0.3.2:10109 ) TCP (duration 5415ms) [ OK ] ns4 TCP -> ns3 (10.0.3.2:10110 ) MPTCP (duration 5413ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10111) MPTCP (duration 41331ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10112) TCP (duration 5415ms) [ OK ] ns4 TCP -> ns3 (dead:beef:3::2:10113) MPTCP (duration 5714ms) [ OK ] Time: 846 seconds After: ns4 MPTCP -> ns3 (10.0.3.2:10108 ) MPTCP (duration 5417ms) [ OK ] ns4 MPTCP -> ns3 (10.0.3.2:10109 ) TCP (duration 5429ms) [ OK ] ns4 TCP -> ns3 (10.0.3.2:10110 ) MPTCP (duration 5418ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10111) MPTCP (duration 5423ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10112) TCP (duration 5715ms) [ OK ] ns4 TCP -> ns3 (dead:beef:3::2:10113) MPTCP (duration 5415ms) [ OK ] Time: 275 seconds Signed-off-by: Florian Westphal <[email protected]>
Helps detection UaF, which apparently kasan misses with kmem_cache allocator. We also need to always set the SOCK_RCU_FREE flag, to preserved the current code leveraging SLAB_TYPESAFE_BY_RCU. This latter change will make unreachable some existing errors path, but I don't see other options. Signed-off-by: Paolo Abeni <[email protected]>
This commit is useful for automated builds, e.g. from Intel's kbuild. Signed-off-by: Matthieu Baerts <[email protected]>
close |
jenkins-tessares
pushed a commit
that referenced
this pull request
Apr 29, 2021
Fix BPF_CORE_READ_BITFIELD() macro used for reading CO-RE-relocatable bitfields. Missing breaks in a switch caused 8-byte reads always. This can confuse libbpf because it does strict checks that memory load size corresponds to the original size of the field, which in this case quite often would be wrong. After fixing that, we run into another problem, which quite subtle, so worth documenting here. The issue is in Clang optimization and CO-RE relocation interactions. Without that asm volatile construct (also known as barrier_var()), Clang will re-order BYTE_OFFSET and BYTE_SIZE relocations and will apply BYTE_OFFSET 4 times for each switch case arm. This will result in the same error from libbpf about mismatch of memory load size and original field size. I.e., if we were reading u32, we'd still have *(u8 *), *(u16 *), *(u32 *), and *(u64 *) memory loads, three of which will fail. Using barrier_var() forces Clang to apply BYTE_OFFSET relocation first (and once) to calculate p, after which value of p is used without relocation in each of switch case arms, doing appropiately-sized memory load. Here's the list of relevant relocations and pieces of generated BPF code before and after this patch for test_core_reloc_bitfields_direct selftests. BEFORE ===== #45: core_reloc: insn #160 --> [5] + 0:5: byte_sz --> struct core_reloc_bitfields.u32 #46: core_reloc: insn #167 --> [5] + 0:5: byte_off --> struct core_reloc_bitfields.u32 #47: core_reloc: insn #174 --> [5] + 0:5: byte_off --> struct core_reloc_bitfields.u32 #48: core_reloc: insn #178 --> [5] + 0:5: byte_off --> struct core_reloc_bitfields.u32 #49: core_reloc: insn #182 --> [5] + 0:5: byte_off --> struct core_reloc_bitfields.u32 157: 18 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r2 = 0 ll 159: 7b 12 20 01 00 00 00 00 *(u64 *)(r2 + 288) = r1 160: b7 02 00 00 04 00 00 00 r2 = 4 ; BYTE_SIZE relocation here ^^^ 161: 66 02 07 00 03 00 00 00 if w2 s> 3 goto +7 <LBB0_63> 162: 16 02 0d 00 01 00 00 00 if w2 == 1 goto +13 <LBB0_65> 163: 16 02 01 00 02 00 00 00 if w2 == 2 goto +1 <LBB0_66> 164: 05 00 12 00 00 00 00 00 goto +18 <LBB0_69> 0000000000000528 <LBB0_66>: 165: 18 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r1 = 0 ll 167: 69 11 08 00 00 00 00 00 r1 = *(u16 *)(r1 + 8) ; BYTE_OFFSET relo here w/ WRONG size ^^^^^^^^^^^^^^^^ 168: 05 00 0e 00 00 00 00 00 goto +14 <LBB0_69> 0000000000000548 <LBB0_63>: 169: 16 02 0a 00 04 00 00 00 if w2 == 4 goto +10 <LBB0_67> 170: 16 02 01 00 08 00 00 00 if w2 == 8 goto +1 <LBB0_68> 171: 05 00 0b 00 00 00 00 00 goto +11 <LBB0_69> 0000000000000560 <LBB0_68>: 172: 18 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r1 = 0 ll 174: 79 11 08 00 00 00 00 00 r1 = *(u64 *)(r1 + 8) ; BYTE_OFFSET relo here w/ WRONG size ^^^^^^^^^^^^^^^^ 175: 05 00 07 00 00 00 00 00 goto +7 <LBB0_69> 0000000000000580 <LBB0_65>: 176: 18 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r1 = 0 ll 178: 71 11 08 00 00 00 00 00 r1 = *(u8 *)(r1 + 8) ; BYTE_OFFSET relo here w/ WRONG size ^^^^^^^^^^^^^^^^ 179: 05 00 03 00 00 00 00 00 goto +3 <LBB0_69> 00000000000005a0 <LBB0_67>: 180: 18 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r1 = 0 ll 182: 61 11 08 00 00 00 00 00 r1 = *(u32 *)(r1 + 8) ; BYTE_OFFSET relo here w/ RIGHT size ^^^^^^^^^^^^^^^^ 00000000000005b8 <LBB0_69>: 183: 67 01 00 00 20 00 00 00 r1 <<= 32 184: b7 02 00 00 00 00 00 00 r2 = 0 185: 16 02 02 00 00 00 00 00 if w2 == 0 goto +2 <LBB0_71> 186: c7 01 00 00 20 00 00 00 r1 s>>= 32 187: 05 00 01 00 00 00 00 00 goto +1 <LBB0_72> 00000000000005e0 <LBB0_71>: 188: 77 01 00 00 20 00 00 00 r1 >>= 32 AFTER ===== #30: core_reloc: insn #132 --> [5] + 0:5: byte_off --> struct core_reloc_bitfields.u32 #31: core_reloc: insn #134 --> [5] + 0:5: byte_sz --> struct core_reloc_bitfields.u32 129: 18 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r2 = 0 ll 131: 7b 12 20 01 00 00 00 00 *(u64 *)(r2 + 288) = r1 132: b7 01 00 00 08 00 00 00 r1 = 8 ; BYTE_OFFSET relo here ^^^ ; no size check for non-memory dereferencing instructions 133: 0f 12 00 00 00 00 00 00 r2 += r1 134: b7 03 00 00 04 00 00 00 r3 = 4 ; BYTE_SIZE relocation here ^^^ 135: 66 03 05 00 03 00 00 00 if w3 s> 3 goto +5 <LBB0_63> 136: 16 03 09 00 01 00 00 00 if w3 == 1 goto +9 <LBB0_65> 137: 16 03 01 00 02 00 00 00 if w3 == 2 goto +1 <LBB0_66> 138: 05 00 0a 00 00 00 00 00 goto +10 <LBB0_69> 0000000000000458 <LBB0_66>: 139: 69 21 00 00 00 00 00 00 r1 = *(u16 *)(r2 + 0) ; NO CO-RE relocation here ^^^^^^^^^^^^^^^^ 140: 05 00 08 00 00 00 00 00 goto +8 <LBB0_69> 0000000000000468 <LBB0_63>: 141: 16 03 06 00 04 00 00 00 if w3 == 4 goto +6 <LBB0_67> 142: 16 03 01 00 08 00 00 00 if w3 == 8 goto +1 <LBB0_68> 143: 05 00 05 00 00 00 00 00 goto +5 <LBB0_69> 0000000000000480 <LBB0_68>: 144: 79 21 00 00 00 00 00 00 r1 = *(u64 *)(r2 + 0) ; NO CO-RE relocation here ^^^^^^^^^^^^^^^^ 145: 05 00 03 00 00 00 00 00 goto +3 <LBB0_69> 0000000000000490 <LBB0_65>: 146: 71 21 00 00 00 00 00 00 r1 = *(u8 *)(r2 + 0) ; NO CO-RE relocation here ^^^^^^^^^^^^^^^^ 147: 05 00 01 00 00 00 00 00 goto +1 <LBB0_69> 00000000000004a0 <LBB0_67>: 148: 61 21 00 00 00 00 00 00 r1 = *(u32 *)(r2 + 0) ; NO CO-RE relocation here ^^^^^^^^^^^^^^^^ 00000000000004a8 <LBB0_69>: 149: 67 01 00 00 20 00 00 00 r1 <<= 32 150: b7 02 00 00 00 00 00 00 r2 = 0 151: 16 02 02 00 00 00 00 00 if w2 == 0 goto +2 <LBB0_71> 152: c7 01 00 00 20 00 00 00 r1 s>>= 32 153: 05 00 01 00 00 00 00 00 goto +1 <LBB0_72> 00000000000004d0 <LBB0_71>: 154: 77 01 00 00 20 00 00 00 r1 >>= 323 Fixes: ee26dad ("libbpf: Add support for relocatable bitfields") Signed-off-by: Andrii Nakryiko <[email protected]> Signed-off-by: Alexei Starovoitov <[email protected]> Acked-by: Lorenz Bauer <[email protected]> Link: https://lore.kernel.org/bpf/[email protected]
jenkins-tessares
pushed a commit
that referenced
this pull request
Nov 4, 2022
…ker() This patch fixes an intra-object buffer overflow in brcmfmac that occurs when the device provides a 'bsscfgidx' equal to or greater than the buffer size. The patch adds a check that leads to a safe failure if that is the case. This fixes CVE-2022-3628. UBSAN: array-index-out-of-bounds in drivers/net/wireless/broadcom/brcm80211/brcmfmac/fweh.c index 52 is out of range for type 'brcmf_if *[16]' CPU: 0 PID: 1898 Comm: kworker/0:2 Tainted: G O 5.14.0+ #132 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014 Workqueue: events brcmf_fweh_event_worker Call Trace: dump_stack_lvl+0x57/0x7d ubsan_epilogue+0x5/0x40 __ubsan_handle_out_of_bounds+0x69/0x80 ? memcpy+0x39/0x60 brcmf_fweh_event_worker+0xae1/0xc00 ? brcmf_fweh_call_event_handler.isra.0+0x100/0x100 ? rcu_read_lock_sched_held+0xa1/0xd0 ? rcu_read_lock_bh_held+0xb0/0xb0 ? lockdep_hardirqs_on_prepare+0x273/0x3e0 process_one_work+0x873/0x13e0 ? lock_release+0x640/0x640 ? pwq_dec_nr_in_flight+0x320/0x320 ? rwlock_bug.part.0+0x90/0x90 worker_thread+0x8b/0xd10 ? __kthread_parkme+0xd9/0x1d0 ? process_one_work+0x13e0/0x13e0 kthread+0x379/0x450 ? _raw_spin_unlock_irq+0x24/0x30 ? set_kthread_struct+0x100/0x100 ret_from_fork+0x1f/0x30 ================================================================================ general protection fault, probably for non-canonical address 0xe5601c0020023fff: 0000 [#1] SMP KASAN KASAN: maybe wild-memory-access in range [0x2b0100010011fff8-0x2b0100010011ffff] CPU: 0 PID: 1898 Comm: kworker/0:2 Tainted: G O 5.14.0+ #132 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014 Workqueue: events brcmf_fweh_event_worker RIP: 0010:brcmf_fweh_call_event_handler.isra.0+0x42/0x100 Code: 89 f5 53 48 89 fb 48 83 ec 08 e8 79 0b 38 fe 48 85 ed 74 7e e8 6f 0b 38 fe 48 89 ea 48 b8 00 00 00 00 00 fc ff df 48 c1 ea 03 <80> 3c 02 00 0f 85 8b 00 00 00 4c 8b 7d 00 44 89 e0 48 ba 00 00 00 RSP: 0018:ffffc9000259fbd8 EFLAGS: 00010207 RAX: dffffc0000000000 RBX: ffff888115d8cd50 RCX: 0000000000000000 RDX: 0560200020023fff RSI: ffffffff8304bc91 RDI: ffff888115d8cd50 RBP: 2b0100010011ffff R08: ffff888112340050 R09: ffffed1023549809 R10: ffff88811aa4c047 R11: ffffed1023549808 R12: 0000000000000045 R13: ffffc9000259fca0 R14: ffff888112340050 R15: ffff888112340000 FS: 0000000000000000(0000) GS:ffff88811aa00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000000004053ccc0 CR3: 0000000112740000 CR4: 0000000000750ef0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: brcmf_fweh_event_worker+0x117/0xc00 ? brcmf_fweh_call_event_handler.isra.0+0x100/0x100 ? rcu_read_lock_sched_held+0xa1/0xd0 ? rcu_read_lock_bh_held+0xb0/0xb0 ? lockdep_hardirqs_on_prepare+0x273/0x3e0 process_one_work+0x873/0x13e0 ? lock_release+0x640/0x640 ? pwq_dec_nr_in_flight+0x320/0x320 ? rwlock_bug.part.0+0x90/0x90 worker_thread+0x8b/0xd10 ? __kthread_parkme+0xd9/0x1d0 ? process_one_work+0x13e0/0x13e0 kthread+0x379/0x450 ? _raw_spin_unlock_irq+0x24/0x30 ? set_kthread_struct+0x100/0x100 ret_from_fork+0x1f/0x30 Modules linked in: 88XXau(O) 88x2bu(O) ---[ end trace 41d302138f3ff55a ]--- RIP: 0010:brcmf_fweh_call_event_handler.isra.0+0x42/0x100 Code: 89 f5 53 48 89 fb 48 83 ec 08 e8 79 0b 38 fe 48 85 ed 74 7e e8 6f 0b 38 fe 48 89 ea 48 b8 00 00 00 00 00 fc ff df 48 c1 ea 03 <80> 3c 02 00 0f 85 8b 00 00 00 4c 8b 7d 00 44 89 e0 48 ba 00 00 00 RSP: 0018:ffffc9000259fbd8 EFLAGS: 00010207 RAX: dffffc0000000000 RBX: ffff888115d8cd50 RCX: 0000000000000000 RDX: 0560200020023fff RSI: ffffffff8304bc91 RDI: ffff888115d8cd50 RBP: 2b0100010011ffff R08: ffff888112340050 R09: ffffed1023549809 R10: ffff88811aa4c047 R11: ffffed1023549808 R12: 0000000000000045 R13: ffffc9000259fca0 R14: ffff888112340050 R15: ffff888112340000 FS: 0000000000000000(0000) GS:ffff88811aa00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000000004053ccc0 CR3: 0000000112740000 CR4: 0000000000750ef0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Kernel panic - not syncing: Fatal exception Reported-by: Dokyung Song <[email protected]> Reported-by: Jisoo Jang <[email protected]> Reported-by: Minsuk Kang <[email protected]> Reviewed-by: Arend van Spriel <[email protected]> Cc: <[email protected]> Signed-off-by: Dokyung Song <[email protected]> Signed-off-by: Kalle Valo <[email protected]> Link: https://lore.kernel.org/r/20221021061359.GA550858@laguna
jenkins-tessares
pushed a commit
that referenced
this pull request
Nov 19, 2022
…equest() This patch fixes a shift-out-of-bounds in brcmfmac that occurs in BIT(chiprev) when a 'chiprev' provided by the device is too large. It should also not be equal to or greater than BITS_PER_TYPE(u32) as we do bitwise AND with a u32 variable and BIT(chiprev). The patch adds a check that makes the function return NULL if that is the case. Note that the NULL case is later handled by the bus-specific caller, brcmf_usb_probe_cb() or brcmf_usb_reset_resume(), for example. Found by a modified version of syzkaller. UBSAN: shift-out-of-bounds in drivers/net/wireless/broadcom/brcm80211/brcmfmac/firmware.c shift exponent 151055786 is too large for 64-bit type 'long unsigned int' CPU: 0 PID: 1885 Comm: kworker/0:2 Tainted: G O 5.14.0+ #132 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014 Workqueue: usb_hub_wq hub_event Call Trace: dump_stack_lvl+0x57/0x7d ubsan_epilogue+0x5/0x40 __ubsan_handle_shift_out_of_bounds.cold+0x53/0xdb ? lock_chain_count+0x20/0x20 brcmf_fw_alloc_request.cold+0x19/0x3ea ? brcmf_fw_get_firmwares+0x250/0x250 ? brcmf_usb_ioctl_resp_wait+0x1a7/0x1f0 brcmf_usb_get_fwname+0x114/0x1a0 ? brcmf_usb_reset_resume+0x120/0x120 ? number+0x6c4/0x9a0 brcmf_c_process_clm_blob+0x168/0x590 ? put_dec+0x90/0x90 ? enable_ptr_key_workfn+0x20/0x20 ? brcmf_common_pd_remove+0x50/0x50 ? rcu_read_lock_sched_held+0xa1/0xd0 brcmf_c_preinit_dcmds+0x673/0xc40 ? brcmf_c_set_joinpref_default+0x100/0x100 ? rcu_read_lock_sched_held+0xa1/0xd0 ? rcu_read_lock_bh_held+0xb0/0xb0 ? lock_acquire+0x19d/0x4e0 ? find_held_lock+0x2d/0x110 ? brcmf_usb_deq+0x1cc/0x260 ? mark_held_locks+0x9f/0xe0 ? lockdep_hardirqs_on_prepare+0x273/0x3e0 ? _raw_spin_unlock_irqrestore+0x47/0x50 ? trace_hardirqs_on+0x1c/0x120 ? brcmf_usb_deq+0x1a7/0x260 ? brcmf_usb_rx_fill_all+0x5a/0xf0 brcmf_attach+0x246/0xd40 ? wiphy_new_nm+0x1476/0x1d50 ? kmemdup+0x30/0x40 brcmf_usb_probe+0x12de/0x1690 ? brcmf_usbdev_qinit.constprop.0+0x470/0x470 usb_probe_interface+0x25f/0x710 really_probe+0x1be/0xa90 __driver_probe_device+0x2ab/0x460 ? usb_match_id.part.0+0x88/0xc0 driver_probe_device+0x49/0x120 __device_attach_driver+0x18a/0x250 ? driver_allows_async_probing+0x120/0x120 bus_for_each_drv+0x123/0x1a0 ? bus_rescan_devices+0x20/0x20 ? lockdep_hardirqs_on_prepare+0x273/0x3e0 ? trace_hardirqs_on+0x1c/0x120 __device_attach+0x207/0x330 ? device_bind_driver+0xb0/0xb0 ? kobject_uevent_env+0x230/0x12c0 bus_probe_device+0x1a2/0x260 device_add+0xa61/0x1ce0 ? __mutex_unlock_slowpath+0xe7/0x660 ? __fw_devlink_link_to_suppliers+0x550/0x550 usb_set_configuration+0x984/0x1770 ? kernfs_create_link+0x175/0x230 usb_generic_driver_probe+0x69/0x90 usb_probe_device+0x9c/0x220 really_probe+0x1be/0xa90 __driver_probe_device+0x2ab/0x460 driver_probe_device+0x49/0x120 __device_attach_driver+0x18a/0x250 ? driver_allows_async_probing+0x120/0x120 bus_for_each_drv+0x123/0x1a0 ? bus_rescan_devices+0x20/0x20 ? lockdep_hardirqs_on_prepare+0x273/0x3e0 ? trace_hardirqs_on+0x1c/0x120 __device_attach+0x207/0x330 ? device_bind_driver+0xb0/0xb0 ? kobject_uevent_env+0x230/0x12c0 bus_probe_device+0x1a2/0x260 device_add+0xa61/0x1ce0 ? __fw_devlink_link_to_suppliers+0x550/0x550 usb_new_device.cold+0x463/0xf66 ? hub_disconnect+0x400/0x400 ? _raw_spin_unlock_irq+0x24/0x30 hub_event+0x10d5/0x3330 ? hub_port_debounce+0x280/0x280 ? __lock_acquire+0x1671/0x5790 ? wq_calc_node_cpumask+0x170/0x2a0 ? lock_release+0x640/0x640 ? rcu_read_lock_sched_held+0xa1/0xd0 ? rcu_read_lock_bh_held+0xb0/0xb0 ? lockdep_hardirqs_on_prepare+0x273/0x3e0 process_one_work+0x873/0x13e0 ? lock_release+0x640/0x640 ? pwq_dec_nr_in_flight+0x320/0x320 ? rwlock_bug.part.0+0x90/0x90 worker_thread+0x8b/0xd10 ? __kthread_parkme+0xd9/0x1d0 ? process_one_work+0x13e0/0x13e0 kthread+0x379/0x450 ? _raw_spin_unlock_irq+0x24/0x30 ? set_kthread_struct+0x100/0x100 ret_from_fork+0x1f/0x30 Reported-by: Dokyung Song <[email protected]> Reported-by: Jisoo Jang <[email protected]> Reported-by: Minsuk Kang <[email protected]> Signed-off-by: Minsuk Kang <[email protected]> Signed-off-by: Kalle Valo <[email protected]> Link: https://lore.kernel.org/r/[email protected]
jenkins-tessares
pushed a commit
that referenced
this pull request
Dec 3, 2022
…of-bounds reads This patch fixes slab-out-of-bounds reads in brcmfmac that occur in brcmf_construct_chaninfo() and brcmf_enable_bw40_2g() when the count value of channel specifications provided by the device is greater than the length of 'list->element[]', decided by the size of the 'list' allocated with kzalloc(). The patch adds checks that make the functions free the buffer and return -EINVAL if that is the case. Note that the negative return is handled by the caller, brcmf_setup_wiphybands() or brcmf_cfg80211_attach(). Found by a modified version of syzkaller. Crash Report from brcmf_construct_chaninfo(): ================================================================== BUG: KASAN: slab-out-of-bounds in brcmf_setup_wiphybands+0x1238/0x1430 Read of size 4 at addr ffff888115f24600 by task kworker/0:2/1896 CPU: 0 PID: 1896 Comm: kworker/0:2 Tainted: G W O 5.14.0+ #132 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014 Workqueue: usb_hub_wq hub_event Call Trace: dump_stack_lvl+0x57/0x7d print_address_description.constprop.0.cold+0x93/0x334 kasan_report.cold+0x83/0xdf brcmf_setup_wiphybands+0x1238/0x1430 brcmf_cfg80211_attach+0x2118/0x3fd0 brcmf_attach+0x389/0xd40 brcmf_usb_probe+0x12de/0x1690 usb_probe_interface+0x25f/0x710 really_probe+0x1be/0xa90 __driver_probe_device+0x2ab/0x460 driver_probe_device+0x49/0x120 __device_attach_driver+0x18a/0x250 bus_for_each_drv+0x123/0x1a0 __device_attach+0x207/0x330 bus_probe_device+0x1a2/0x260 device_add+0xa61/0x1ce0 usb_set_configuration+0x984/0x1770 usb_generic_driver_probe+0x69/0x90 usb_probe_device+0x9c/0x220 really_probe+0x1be/0xa90 __driver_probe_device+0x2ab/0x460 driver_probe_device+0x49/0x120 __device_attach_driver+0x18a/0x250 bus_for_each_drv+0x123/0x1a0 __device_attach+0x207/0x330 bus_probe_device+0x1a2/0x260 device_add+0xa61/0x1ce0 usb_new_device.cold+0x463/0xf66 hub_event+0x10d5/0x3330 process_one_work+0x873/0x13e0 worker_thread+0x8b/0xd10 kthread+0x379/0x450 ret_from_fork+0x1f/0x30 Allocated by task 1896: kasan_save_stack+0x1b/0x40 __kasan_kmalloc+0x7c/0x90 kmem_cache_alloc_trace+0x19e/0x330 brcmf_setup_wiphybands+0x290/0x1430 brcmf_cfg80211_attach+0x2118/0x3fd0 brcmf_attach+0x389/0xd40 brcmf_usb_probe+0x12de/0x1690 usb_probe_interface+0x25f/0x710 really_probe+0x1be/0xa90 __driver_probe_device+0x2ab/0x460 driver_probe_device+0x49/0x120 __device_attach_driver+0x18a/0x250 bus_for_each_drv+0x123/0x1a0 __device_attach+0x207/0x330 bus_probe_device+0x1a2/0x260 device_add+0xa61/0x1ce0 usb_set_configuration+0x984/0x1770 usb_generic_driver_probe+0x69/0x90 usb_probe_device+0x9c/0x220 really_probe+0x1be/0xa90 __driver_probe_device+0x2ab/0x460 driver_probe_device+0x49/0x120 __device_attach_driver+0x18a/0x250 bus_for_each_drv+0x123/0x1a0 __device_attach+0x207/0x330 bus_probe_device+0x1a2/0x260 device_add+0xa61/0x1ce0 usb_new_device.cold+0x463/0xf66 hub_event+0x10d5/0x3330 process_one_work+0x873/0x13e0 worker_thread+0x8b/0xd10 kthread+0x379/0x450 ret_from_fork+0x1f/0x30 The buggy address belongs to the object at ffff888115f24000 which belongs to the cache kmalloc-2k of size 2048 The buggy address is located 1536 bytes inside of 2048-byte region [ffff888115f24000, ffff888115f24800) Memory state around the buggy address: ffff888115f24500: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffff888115f24580: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 >ffff888115f24600: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ^ ffff888115f24680: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ffff888115f24700: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ================================================================== Crash Report from brcmf_enable_bw40_2g(): ================================================================== BUG: KASAN: slab-out-of-bounds in brcmf_cfg80211_attach+0x3d11/0x3fd0 Read of size 4 at addr ffff888103787600 by task kworker/0:2/1896 CPU: 0 PID: 1896 Comm: kworker/0:2 Tainted: G W O 5.14.0+ #132 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014 Workqueue: usb_hub_wq hub_event Call Trace: dump_stack_lvl+0x57/0x7d print_address_description.constprop.0.cold+0x93/0x334 kasan_report.cold+0x83/0xdf brcmf_cfg80211_attach+0x3d11/0x3fd0 brcmf_attach+0x389/0xd40 brcmf_usb_probe+0x12de/0x1690 usb_probe_interface+0x25f/0x710 really_probe+0x1be/0xa90 __driver_probe_device+0x2ab/0x460 driver_probe_device+0x49/0x120 __device_attach_driver+0x18a/0x250 bus_for_each_drv+0x123/0x1a0 __device_attach+0x207/0x330 bus_probe_device+0x1a2/0x260 device_add+0xa61/0x1ce0 usb_set_configuration+0x984/0x1770 usb_generic_driver_probe+0x69/0x90 usb_probe_device+0x9c/0x220 really_probe+0x1be/0xa90 __driver_probe_device+0x2ab/0x460 driver_probe_device+0x49/0x120 __device_attach_driver+0x18a/0x250 bus_for_each_drv+0x123/0x1a0 __device_attach+0x207/0x330 bus_probe_device+0x1a2/0x260 device_add+0xa61/0x1ce0 usb_new_device.cold+0x463/0xf66 hub_event+0x10d5/0x3330 process_one_work+0x873/0x13e0 worker_thread+0x8b/0xd10 kthread+0x379/0x450 ret_from_fork+0x1f/0x30 Allocated by task 1896: kasan_save_stack+0x1b/0x40 __kasan_kmalloc+0x7c/0x90 kmem_cache_alloc_trace+0x19e/0x330 brcmf_cfg80211_attach+0x3302/0x3fd0 brcmf_attach+0x389/0xd40 brcmf_usb_probe+0x12de/0x1690 usb_probe_interface+0x25f/0x710 really_probe+0x1be/0xa90 __driver_probe_device+0x2ab/0x460 driver_probe_device+0x49/0x120 __device_attach_driver+0x18a/0x250 bus_for_each_drv+0x123/0x1a0 __device_attach+0x207/0x330 bus_probe_device+0x1a2/0x260 device_add+0xa61/0x1ce0 usb_set_configuration+0x984/0x1770 usb_generic_driver_probe+0x69/0x90 usb_probe_device+0x9c/0x220 really_probe+0x1be/0xa90 __driver_probe_device+0x2ab/0x460 driver_probe_device+0x49/0x120 __device_attach_driver+0x18a/0x250 bus_for_each_drv+0x123/0x1a0 __device_attach+0x207/0x330 bus_probe_device+0x1a2/0x260 device_add+0xa61/0x1ce0 usb_new_device.cold+0x463/0xf66 hub_event+0x10d5/0x3330 process_one_work+0x873/0x13e0 worker_thread+0x8b/0xd10 kthread+0x379/0x450 ret_from_fork+0x1f/0x30 The buggy address belongs to the object at ffff888103787000 which belongs to the cache kmalloc-2k of size 2048 The buggy address is located 1536 bytes inside of 2048-byte region [ffff888103787000, ffff888103787800) Memory state around the buggy address: ffff888103787500: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffff888103787580: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 >ffff888103787600: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ^ ffff888103787680: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ffff888103787700: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ================================================================== Reported-by: Dokyung Song <[email protected]> Reported-by: Jisoo Jang <[email protected]> Reported-by: Minsuk Kang <[email protected]> Reviewed-by: Arend van Spriel <[email protected]> Signed-off-by: Minsuk Kang <[email protected]> Signed-off-by: Kalle Valo <[email protected]> Link: https://lore.kernel.org/r/[email protected]
jenkins-tessares
pushed a commit
that referenced
this pull request
Jan 24, 2023
…k-out-of-bounds Fix a stack-out-of-bounds read in brcmfmac that occurs when 'buf' that is not null-terminated is passed as an argument of strreplace() in brcmf_c_preinit_dcmds(). This buffer is filled with a CLM version string by memcpy() in brcmf_fil_iovar_data_get(). Ensure buf is null-terminated. Found by a modified version of syzkaller. [ 33.004414][ T1896] brcmfmac: brcmf_c_process_clm_blob: no clm_blob available (err=-2), device may have limited channels available [ 33.013486][ T1896] brcmfmac: brcmf_c_preinit_dcmds: Firmware: BCM43236/3 wl0: Nov 30 2011 17:33:42 version 5.90.188.22 [ 33.021554][ T1896] ================================================================== [ 33.022379][ T1896] BUG: KASAN: stack-out-of-bounds in strreplace+0xf2/0x110 [ 33.023122][ T1896] Read of size 1 at addr ffffc90001d6efc8 by task kworker/0:2/1896 [ 33.023852][ T1896] [ 33.024096][ T1896] CPU: 0 PID: 1896 Comm: kworker/0:2 Tainted: G O 5.14.0+ #132 [ 33.024927][ T1896] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014 [ 33.026065][ T1896] Workqueue: usb_hub_wq hub_event [ 33.026581][ T1896] Call Trace: [ 33.026896][ T1896] dump_stack_lvl+0x57/0x7d [ 33.027372][ T1896] print_address_description.constprop.0.cold+0xf/0x334 [ 33.028037][ T1896] ? strreplace+0xf2/0x110 [ 33.028403][ T1896] ? strreplace+0xf2/0x110 [ 33.028807][ T1896] kasan_report.cold+0x83/0xdf [ 33.029283][ T1896] ? strreplace+0xf2/0x110 [ 33.029666][ T1896] strreplace+0xf2/0x110 [ 33.029966][ T1896] brcmf_c_preinit_dcmds+0xab1/0xc40 [ 33.030351][ T1896] ? brcmf_c_set_joinpref_default+0x100/0x100 [ 33.030787][ T1896] ? rcu_read_lock_sched_held+0xa1/0xd0 [ 33.031223][ T1896] ? rcu_read_lock_bh_held+0xb0/0xb0 [ 33.031661][ T1896] ? lock_acquire+0x19d/0x4e0 [ 33.032091][ T1896] ? find_held_lock+0x2d/0x110 [ 33.032605][ T1896] ? brcmf_usb_deq+0x1a7/0x260 [ 33.033087][ T1896] ? brcmf_usb_rx_fill_all+0x5a/0xf0 [ 33.033582][ T1896] brcmf_attach+0x246/0xd40 [ 33.034022][ T1896] ? wiphy_new_nm+0x1476/0x1d50 [ 33.034383][ T1896] ? kmemdup+0x30/0x40 [ 33.034722][ T1896] brcmf_usb_probe+0x12de/0x1690 [ 33.035223][ T1896] ? brcmf_usbdev_qinit.constprop.0+0x470/0x470 [ 33.035833][ T1896] usb_probe_interface+0x25f/0x710 [ 33.036315][ T1896] really_probe+0x1be/0xa90 [ 33.036656][ T1896] __driver_probe_device+0x2ab/0x460 [ 33.037026][ T1896] ? usb_match_id.part.0+0x88/0xc0 [ 33.037383][ T1896] driver_probe_device+0x49/0x120 [ 33.037790][ T1896] __device_attach_driver+0x18a/0x250 [ 33.038300][ T1896] ? driver_allows_async_probing+0x120/0x120 [ 33.038986][ T1896] bus_for_each_drv+0x123/0x1a0 [ 33.039906][ T1896] ? bus_rescan_devices+0x20/0x20 [ 33.041412][ T1896] ? lockdep_hardirqs_on_prepare+0x273/0x3e0 [ 33.041861][ T1896] ? trace_hardirqs_on+0x1c/0x120 [ 33.042330][ T1896] __device_attach+0x207/0x330 [ 33.042664][ T1896] ? device_bind_driver+0xb0/0xb0 [ 33.043026][ T1896] ? kobject_uevent_env+0x230/0x12c0 [ 33.043515][ T1896] bus_probe_device+0x1a2/0x260 [ 33.043914][ T1896] device_add+0xa61/0x1ce0 [ 33.044227][ T1896] ? __mutex_unlock_slowpath+0xe7/0x660 [ 33.044891][ T1896] ? __fw_devlink_link_to_suppliers+0x550/0x550 [ 33.045531][ T1896] usb_set_configuration+0x984/0x1770 [ 33.046051][ T1896] ? kernfs_create_link+0x175/0x230 [ 33.046548][ T1896] usb_generic_driver_probe+0x69/0x90 [ 33.046931][ T1896] usb_probe_device+0x9c/0x220 [ 33.047434][ T1896] really_probe+0x1be/0xa90 [ 33.047760][ T1896] __driver_probe_device+0x2ab/0x460 [ 33.048134][ T1896] driver_probe_device+0x49/0x120 [ 33.048516][ T1896] __device_attach_driver+0x18a/0x250 [ 33.048910][ T1896] ? driver_allows_async_probing+0x120/0x120 [ 33.049437][ T1896] bus_for_each_drv+0x123/0x1a0 [ 33.049814][ T1896] ? bus_rescan_devices+0x20/0x20 [ 33.050164][ T1896] ? lockdep_hardirqs_on_prepare+0x273/0x3e0 [ 33.050579][ T1896] ? trace_hardirqs_on+0x1c/0x120 [ 33.050936][ T1896] __device_attach+0x207/0x330 [ 33.051399][ T1896] ? device_bind_driver+0xb0/0xb0 [ 33.051888][ T1896] ? kobject_uevent_env+0x230/0x12c0 [ 33.052314][ T1896] bus_probe_device+0x1a2/0x260 [ 33.052688][ T1896] device_add+0xa61/0x1ce0 [ 33.053121][ T1896] ? __fw_devlink_link_to_suppliers+0x550/0x550 [ 33.053568][ T1896] usb_new_device.cold+0x463/0xf66 [ 33.053953][ T1896] ? hub_disconnect+0x400/0x400 [ 33.054313][ T1896] ? rwlock_bug.part.0+0x90/0x90 [ 33.054661][ T1896] ? lockdep_hardirqs_on_prepare+0x273/0x3e0 [ 33.055094][ T1896] hub_event+0x10d5/0x3330 [ 33.055530][ T1896] ? hub_port_debounce+0x280/0x280 [ 33.055934][ T1896] ? __lock_acquire+0x1671/0x5790 [ 33.056387][ T1896] ? wq_calc_node_cpumask+0x170/0x2a0 [ 33.056924][ T1896] ? lock_release+0x640/0x640 [ 33.057383][ T1896] ? rcu_read_lock_sched_held+0xa1/0xd0 [ 33.057916][ T1896] ? rcu_read_lock_bh_held+0xb0/0xb0 [ 33.058402][ T1896] ? lockdep_hardirqs_on_prepare+0x273/0x3e0 [ 33.059019][ T1896] process_one_work+0x873/0x13e0 [ 33.059488][ T1896] ? lock_release+0x640/0x640 [ 33.059932][ T1896] ? pwq_dec_nr_in_flight+0x320/0x320 [ 33.060446][ T1896] ? rwlock_bug.part.0+0x90/0x90 [ 33.060898][ T1896] worker_thread+0x8b/0xd10 [ 33.061348][ T1896] ? __kthread_parkme+0xd9/0x1d0 [ 33.061810][ T1896] ? process_one_work+0x13e0/0x13e0 [ 33.062288][ T1896] kthread+0x379/0x450 [ 33.062660][ T1896] ? _raw_spin_unlock_irq+0x24/0x30 [ 33.063148][ T1896] ? set_kthread_struct+0x100/0x100 [ 33.063606][ T1896] ret_from_fork+0x1f/0x30 [ 33.064070][ T1896] [ 33.064313][ T1896] [ 33.064545][ T1896] addr ffffc90001d6efc8 is located in stack of task kworker/0:2/1896 at offset 512 in frame: [ 33.065478][ T1896] brcmf_c_preinit_dcmds+0x0/0xc40 [ 33.065973][ T1896] [ 33.066191][ T1896] this frame has 4 objects: [ 33.066614][ T1896] [48, 56) 'ptr' [ 33.066618][ T1896] [80, 148) 'revinfo' [ 33.066957][ T1896] [192, 210) 'eventmask' [ 33.067338][ T1896] [256, 512) 'buf' [ 33.067742][ T1896] [ 33.068304][ T1896] Memory state around the buggy address: [ 33.068838][ T1896] ffffc90001d6ee80: f2 00 00 02 f2 f2 f2 f2 f2 00 00 00 00 00 00 00 [ 33.069545][ T1896] ffffc90001d6ef00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 33.070626][ T1896] >ffffc90001d6ef80: 00 00 00 00 00 00 00 00 00 f3 f3 f3 f3 f3 f3 f3 [ 33.072052][ T1896] ^ [ 33.073043][ T1896] ffffc90001d6f000: f3 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 33.074230][ T1896] ffffc90001d6f080: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 33.074914][ T1896] ================================================================== [ 33.075713][ T1896] Disabling lock debugging due to kernel taint Reviewed-by: Arend van Spriel<[email protected]> Signed-off-by: Jisoo Jang <[email protected]> Signed-off-by: Kalle Valo <[email protected]> Link: https://lore.kernel.org/r/[email protected]
jenkins-tessares
pushed a commit
that referenced
this pull request
Aug 14, 2023
LE Create CIS command shall not be sent before all CIS Established events from its previous invocation have been processed. Currently it is sent via hci_sync but that only waits for the first event, but there can be multiple. Make it wait for all events, and simplify the CIS creation as follows: Add new flag HCI_CONN_CREATE_CIS, which is set if Create CIS has been sent for the connection but it is not yet completed. Make BT_CONNECT state to mean the connection wants Create CIS. On events after which new Create CIS may need to be sent, send it if possible and some connections need it. These events are: hci_connect_cis, iso_connect_cfm, hci_cs_le_create_cis, hci_le_cis_estabilished_evt. The Create CIS status/completion events shall queue new Create CIS only if at least one of the connections transitions away from BT_CONNECT, so that we don't loop if controller is sending bogus events. This fixes sending multiple CIS Create for the same CIS in the "ISO AC 6(i) - Success" BlueZ test case: < HCI Command: LE Create Co.. (0x08|0x0064) plen 9 #129 [hci0] Number of CIS: 2 CIS Handle: 257 ACL Handle: 42 CIS Handle: 258 ACL Handle: 42 > HCI Event: Command Status (0x0f) plen 4 #130 [hci0] LE Create Connected Isochronous Stream (0x08|0x0064) ncmd 1 Status: Success (0x00) > HCI Event: LE Meta Event (0x3e) plen 29 #131 [hci0] LE Connected Isochronous Stream Established (0x19) Status: Success (0x00) Connection Handle: 257 ... < HCI Command: LE Setup Is.. (0x08|0x006e) plen 13 #132 [hci0] ... > HCI Event: Command Complete (0x0e) plen 6 #133 [hci0] LE Setup Isochronous Data Path (0x08|0x006e) ncmd 1 ... < HCI Command: LE Create Co.. (0x08|0x0064) plen 5 #134 [hci0] Number of CIS: 1 CIS Handle: 258 ACL Handle: 42 > HCI Event: Command Status (0x0f) plen 4 #135 [hci0] LE Create Connected Isochronous Stream (0x08|0x0064) ncmd 1 Status: ACL Connection Already Exists (0x0b) > HCI Event: LE Meta Event (0x3e) plen 29 #136 [hci0] LE Connected Isochronous Stream Established (0x19) Status: Success (0x00) Connection Handle: 258 ... Fixes: c09b80b ("Bluetooth: hci_conn: Fix not waiting for HCI_EVT_LE_CIS_ESTABLISHED") Signed-off-by: Pauli Virtanen <[email protected]> Signed-off-by: Luiz Augusto von Dentz <[email protected]>
jenkins-tessares
pushed a commit
that referenced
this pull request
Sep 22, 2023
dm looks up the table for IO based on the request type, with an assumption that if the request is marked REQ_NOWAIT, it's fine to attempt to submit that IO while under RCU read lock protection. This is not OK, as REQ_NOWAIT just means that we should not be sleeping waiting on other IO, it does not mean that we can't potentially schedule. A simple test case demonstrates this quite nicely: int main(int argc, char *argv[]) { struct iovec iov; int fd; fd = open("/dev/dm-0", O_RDONLY | O_DIRECT); posix_memalign(&iov.iov_base, 4096, 4096); iov.iov_len = 4096; preadv2(fd, &iov, 1, 0, RWF_NOWAIT); return 0; } which will instantly spew: BUG: sleeping function called from invalid context at include/linux/sched/mm.h:306 in_atomic(): 0, irqs_disabled(): 0, non_block: 0, pid: 5580, name: dm-nowait preempt_count: 0, expected: 0 RCU nest depth: 1, expected: 0 INFO: lockdep is turned off. CPU: 7 PID: 5580 Comm: dm-nowait Not tainted 6.6.0-rc1-g39956d2dcd81 #132 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x11d/0x1b0 __might_resched+0x3c3/0x5e0 ? preempt_count_sub+0x150/0x150 mempool_alloc+0x1e2/0x390 ? mempool_resize+0x7d0/0x7d0 ? lock_sync+0x190/0x190 ? lock_release+0x4b7/0x670 ? internal_get_user_pages_fast+0x868/0x2d40 bio_alloc_bioset+0x417/0x8c0 ? bvec_alloc+0x200/0x200 ? internal_get_user_pages_fast+0xb8c/0x2d40 bio_alloc_clone+0x53/0x100 dm_submit_bio+0x27f/0x1a20 ? lock_release+0x4b7/0x670 ? blk_try_enter_queue+0x1a0/0x4d0 ? dm_dax_direct_access+0x260/0x260 ? rcu_is_watching+0x12/0xb0 ? blk_try_enter_queue+0x1cc/0x4d0 __submit_bio+0x239/0x310 ? __bio_queue_enter+0x700/0x700 ? kvm_clock_get_cycles+0x40/0x60 ? ktime_get+0x285/0x470 submit_bio_noacct_nocheck+0x4d9/0xb80 ? should_fail_request+0x80/0x80 ? preempt_count_sub+0x150/0x150 ? lock_release+0x4b7/0x670 ? __bio_add_page+0x143/0x2d0 ? iov_iter_revert+0x27/0x360 submit_bio_noacct+0x53e/0x1b30 submit_bio_wait+0x10a/0x230 ? submit_bio_wait_endio+0x40/0x40 __blkdev_direct_IO_simple+0x4f8/0x780 ? blkdev_bio_end_io+0x4c0/0x4c0 ? stack_trace_save+0x90/0xc0 ? __bio_clone+0x3c0/0x3c0 ? lock_release+0x4b7/0x670 ? lock_sync+0x190/0x190 ? atime_needs_update+0x3bf/0x7e0 ? timestamp_truncate+0x21b/0x2d0 ? inode_owner_or_capable+0x240/0x240 blkdev_direct_IO.part.0+0x84a/0x1810 ? rcu_is_watching+0x12/0xb0 ? lock_release+0x4b7/0x670 ? blkdev_read_iter+0x40d/0x530 ? reacquire_held_locks+0x4e0/0x4e0 ? __blkdev_direct_IO_simple+0x780/0x780 ? rcu_is_watching+0x12/0xb0 ? __mark_inode_dirty+0x297/0xd50 ? preempt_count_add+0x72/0x140 blkdev_read_iter+0x2a4/0x530 do_iter_readv_writev+0x2f2/0x3c0 ? generic_copy_file_range+0x1d0/0x1d0 ? fsnotify_perm.part.0+0x25d/0x630 ? security_file_permission+0xd8/0x100 do_iter_read+0x31b/0x880 ? import_iovec+0x10b/0x140 vfs_readv+0x12d/0x1a0 ? vfs_iter_read+0xb0/0xb0 ? rcu_is_watching+0x12/0xb0 ? rcu_is_watching+0x12/0xb0 ? lock_release+0x4b7/0x670 do_preadv+0x1b3/0x260 ? do_readv+0x370/0x370 __x64_sys_preadv2+0xef/0x150 do_syscall_64+0x39/0xb0 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7f5af41ad806 Code: 41 54 41 89 fc 55 44 89 c5 53 48 89 cb 48 83 ec 18 80 3d e4 dd 0d 00 00 74 7a 45 89 c1 49 89 ca 45 31 c0 b8 47 01 00 00 0f 05 <48> 3d 00 f0 ff ff 0f 87 be 00 00 00 48 85 c0 79 4a 48 8b 0d da 55 RSP: 002b:00007ffd3145c7f0 EFLAGS: 00000246 ORIG_RAX: 0000000000000147 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f5af41ad806 RDX: 0000000000000001 RSI: 00007ffd3145c850 RDI: 0000000000000003 RBP: 0000000000000008 R08: 0000000000000000 R09: 0000000000000008 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000003 R13: 00007ffd3145c850 R14: 000055f5f0431dd8 R15: 0000000000000001 </TASK> where in fact it is dm itself that attempts to allocate a bio clone with GFP_NOIO under the rcu read lock, regardless of the request type. Fix this by getting rid of the special casing for REQ_NOWAIT, and just use the normal SRCU protected table lookup. Get rid of the bio based table locking helpers at the same time, as they are now unused. Cc: [email protected] Fixes: 563a225 ("dm: introduce dm_{get,put}_live_table_bio called from dm_submit_bio") Signed-off-by: Jens Axboe <[email protected]> Signed-off-by: Mike Snitzer <[email protected]>
jenkins-tessares
pushed a commit
that referenced
this pull request
Oct 20, 2023
Fix the below warning by avoding calls to tmc_etr_enable_hw, if we are reusing the ETR buffer for multiple sources in sysfs mode. echo 1 > /sys/bus/coresight/devices/tmc_etr0/enable_sink echo 1 > /sys/bus/coresight/devices/ete1/enable_source echo 1 > /sys/bus/coresight/devices/ete2/enable_source [ 166.918290] ------------[ cut here ]------------ [ 166.922905] WARNING: CPU: 4 PID: 2288 at drivers/hwtracing/coresight/coresight-tmc-etr.c:1037 tmc_etr_enable_hw+0xb0/0xc8 [ 166.933862] Modules linked in: [ 166.936911] CPU: 4 PID: 2288 Comm: bash Not tainted 6.5.0-rc7 #132 [ 166.943084] Hardware name: Marvell CN106XX board (DT) [ 166.948127] pstate: 834000c9 (Nzcv daIF +PAN -UAO +TCO +DIT -SSBS BTYPE=--) [ 166.955083] pc : tmc_etr_enable_hw+0xb0/0xc8 [ 166.959345] lr : tmc_enable_etr_sink+0x134/0x210 snip.. 167.038545] Call trace: [ 167.040982] tmc_etr_enable_hw+0xb0/0xc8 [ 167.044897] tmc_enable_etr_sink+0x134/0x210 [ 167.049160] coresight_enable_path+0x160/0x278 [ 167.053596] coresight_enable+0xd4/0x298 [ 167.057510] enable_source_store+0x54/0xa0 [ 167.061598] dev_attr_store+0x20/0x40 [ 167.065254] sysfs_kf_write+0x4c/0x68 [ 167.068909] kernfs_fop_write_iter+0x128/0x200 [ 167.073345] vfs_write+0x1ac/0x2f8 [ 167.076739] ksys_write+0x74/0x110 [ 167.080132] __arm64_sys_write+0x24/0x38 [ 167.084045] invoke_syscall.constprop.0+0x58/0xf8 [ 167.088744] do_el0_svc+0x60/0x160 [ 167.092137] el0_svc+0x40/0x170 [ 167.095273] el0t_64_sync_handler+0x100/0x130 [ 167.099621] el0t_64_sync+0x190/0x198 [ 167.103277] ---[ end trace 0000000000000000 ]--- -bash: echo: write error: Device or resource busy Fixes: 296b01f ("coresight: Refactor out buffer allocation function for ETR") Signed-off-by: Linu Cherian <[email protected]> Reviewed-by: James Clark <[email protected]> Signed-off-by: Suzuki K Poulose <[email protected]> Link: https://lore.kernel.org/r/[email protected]
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
No description provided.